IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

1975

An interface processor for a high speed recirculating
data network

Chong Chun Lee
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
b Part of the Electrical and Flectronics Commons

Recommended Citation

Lee, Chong Chun, "An interface processor for a high speed recirculating data network " (1975). Retrospective Theses and Dissertations.
5380.
https://lib.dr.iastate.edu/rtd /5380

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F5380&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F5380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F5380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F5380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F5380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F5380&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F5380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/5380?utm_source=lib.dr.iastate.edu%2Frtd%2F5380&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technolcgical means to photograph and reproduce this document

have been used, the quality is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.

The sign or “‘target’” for pages apparently lacking from the document
photographed is “Missing Page{s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adiacent
pages to insure you complete continuity.

. When an image on the film is obliterated with a large round black mark, it

is an indication that the photegrapher suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

3.When a 'map, drawing or chart, etc.,, was part of the material being

photographed the photographer followed a definite method in
“sectioning” the material. It is customary to begin photoing at the upper
left hand corner of 2 large shest and to continue nhotoing from laft to
right in equal sections with a small overlap. If necessary, sectioning is
continued again — beginning below the first row and continuing on until
complete.

. The majority of users indicate that the textual content is of greatest value,

Lowever, a somewhat higher quality reproduction could ke made from
“photographs’’ if essential to the understanding of the dissertation. Silver
prints of “photographs™ may e ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

.PLEASE NOTE: Some pages may have indistinct print. Filmed as

P Y VY

Xerox University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106

75-17,398
LEE, Chong Chum, 1948-

AN INTERFACE PROCESSOR FOR A HIGH SPEED
B 'RECTRCULATING DATA NETWORK.

Iowa State University, Ph.D., 1975
Engineering, electrical

Xerox University Microfilms, ann Arbor, Michigan 48106

Copyright by
CHONG CHUN LEE
1975

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.

An interface processor for a high

speed recirculatingy data network

by

Chong Chun Lee

A Dissertation Submitted to th2
Graduate Faculty in Partial Fulfillment of
The Raquirements for the Degree of

DOCTOR OF PHILOSOPHY
Major:s Electrical Engine2ring
Approved:
Signature was redacted for privacy.

In Charge of Major fork

Signature was redacted for privacy.

For the Major D=partment

Signature was redacted for privacy.

For the Gradute College

Iowa State Oniversity
Ames, Iowa

1975

Cepyright@®Chong Chun Lee, 1975. All rights ressrva3.

A LIST

TABLE OF

OF SYMBOLS

ABSTRACT

INTRODUCTION

REVIEW OF LITERATURE

RESEARCH PROJECT OVERVIEW

THE INTERFACE

DESIGN

f'f\\l’Cf nTCcTN
- LA

i

Problen Considerations

Status of a

-3

ime Slot
Functional Descriptions
Types of Massages
Tables

Processing Requirements
CONSIDERATIONS
Programmable Read Only
Table Matéher

Output Sequencer
Micro-processor

System Maintsnance

ki
wn

BIBLIOGRAPHY

ACKNOWLEDGEMENT

APPENDIX A. FLOWCHARTS OF INT

APPENDIX B. INSTRUCTION SET D

ii

CONRTENTS
Pag?

iv

1"
17

17

24
29
34
S4

Memories 64

93
ERFACE OPERATIONS 100

ESCRIPTIONS 133

APPENDIX
APPENDIX
APPENDIX

APPENDIX

iii

DESCRIPTIONS OF BASIC SUBROUTINES
SPECIAL STORAGE
SIMPLIFIED FLOWCHARTS

CONTROL PROGRAMS

159
168
173

193

A LIST OF SYMBOLS

SBAT : Socource Baffer Address Table

DBAT : Destination Buffer Address Table
SBST =: Source Buffer Status Table

DBST : Destiration Buffer Status Tablz
TAT : Table Address Table

TSAT : Time Slot Acknowledge Table

PNT : Procass Name Table

ADT : BAllowed Destination Tabie

TOT ¢ Table Updating Table

IIT : Interrupt Information Tabl=
oS : Output Seguencer

™ : Table Matcher

Micro : Micro-processor

PROM : Programmable Read Only Memory

)
o
=
s

Random Access Memory

ABSTRACT

The objectivas o5f this work is to make an original con-
tribution to th2 knowledge about general purpose interface
processors for loop connected data communication systess.
Specifically, three of the research goals are (1) to discover
critical parameters in inter facing such a system, (2) to de-
termine a near optimum Ooryanization for an interfacs process-
ing unit, (3) t> deamaonstrate on a general and dstailed basis
that such a system is feasible.

The results of the ra2search goals are: (1) Critizal
parameters in the syster are found to be the processing ratas
for the various table matchas; this problam was solved by a
processor specially dsvaloped for high speed sequential tabl=2
searching operations. (2) The interface is >srgyanized as a
multi-processor system which has three small procasssors work-
ing concurrentiy for different interfacing problems. {3)
Feasibiiity of such a system is demonstrat=d in two ways: a)
general discussion >f the system at the block diagrim and

flowchart levels; b) detailed discussion >5f the systen.

IRTRODUCTION

A computer network is an interconnected set of dependent
or independent computer systems which communicate with esach
other in order to share cesrtain resources such as programs >5r
data. There are two major capabilities desir23 in a data
network. One is load sharing which is the ability to take 2
given work load ard to distribute it amongy th= computers of a
network in order to maks 2fficient use of the resources of
the network. The other is prograh sharing which is th2
ability t5 allow 3data t> be sent to a system at which a
desired program is resiient.

The technijuss involved in achieving thess two major
requirements on a computer network are gr2atly dependent on
the data communication link topology. The siaplest kind of
data communication link is zalled a2 point-to-psint link as
shown in Figure 1. Figure 2 and Figure 3 show two other
communications link topdlogies; a nonswitched multipoint
system and a switched system. The multipoint link systen
connects more than two stations togyethsr. Th2 svwitched link
system allows communication betwea2n pairs 5f stations which
are temporarily connected in a point-to-point fashion by ths
switching facility. Th2s2 thrse basic link configurations
are currently used to construct complex communicatiosns
networks, in which interconnections are achisvai by allowing

the stations to have both transmission and receiving capabil-

sl

sl S2
Figure 1. Foint-to-point systen.
S2 S3 e o Sn
Figure 2. HNonswitched multifpoint systen.
sl sS4
temporary
point-to-
point i
oconnection °
- -

Figure 3.

Switched

system.

ities.

To increase the potential capability of a network, tem-
porary point-to-multipoint connections are required
occasionally. This is not gensrally possible in a switched
system operating sn a point-to-point fashion. When th2 num-
ber of stations connected to the system increases linearly,
the complexity of control functions on the central switching
device grows exponentially to provide for ali the possible
connections of the stations. Due to thes2 reasons, th2 cen-
tral switching device of the switched systam is not economi-
cally f=sasible when the control fanctions becom2 complax,

A possible approach to provids the same capabilities as
the switched systam, using a central device, is a loop
topology technique. Th2 control function of the complax
central svwitching dsvice is to be broken into two parts; on2

r for

[ty

rol and the oth
interfacing problams. The line controcl functions of the loop
are assigned to the reposater and a master rap2ater and the
switching control functions are distributed over th2
interfaces, as shown in Figure 8. The control functions of
the complex central switching jevice are moval to the
interface and the lins controller. This allows a complex
switched communication systam to b2 physically implamented
using a closed losp connecting each station together through

a locally owned interface.

repeater

master
repeater

repeater

Figure 4.

repanxm

N
\

interface

A loop connected systeam.

attached
devices

In a university 2nvironmant, an experimental commanica-
tion loop for computer access should have the following

characteristics.

i. A givan station must be able to acc2ss any othsr

station on the loop.
2. The data loop should be constructed to have 2nough
bandwidth to meet the usar's needs.
3. The initial cost of the data loop should be kept to
a minimum.
4. The incremental cost of adding stations to the ex-
isting loop should be modest.
5. The data loop must be reliable,
In January 1973, the I.S.0. Computation Center and the
I.S.U. College of Enginsering undertook a 3avalopment project

to provide a local high speed recirculating data network

i©C

hir
hlc

ir

is £ormed

(b

Y intercornecting various =2
teletype compatible devices and data collectisn devices
throughout the =2ngineering college buildings as cne loop.

The purpose of this loop is to share computingy power and sec-
orndary storage facilities among the various rasearch and lab-
oratory facilities that may exist in the =2ngian=2ring
departments. Currently, twd repeaters, one master rep2ater
and three interface processors are being constructel to forn
a loop with thr2e stations. The loop will be ready for

testing some time befor2 summer, 1975. Th2 plan may b= ex-

panded to the whole Iowa State University campus connecting a
number of loops tied togethar.

In conjunctisn with the project, this disssrtation
describes the following thrze research goals pursuel for
making an original contribution +o the knowledge about gesner-
al purpose interface procsssors for loop conn2ct=ad systems.

| 1. discover critical parameters in intarfacing such a
systen.

2. determine a n2ar optimum organization for an

interface processing unit.

3. demonstrate on 31 gen=2ral and detail=2d basis that

such a systsm is feasible.

The results of the r2search gjoals are2 discussed in the
following ways.

1. The discoverel critical parametsrs ars =2xamin=d aad

their impact on the system are evaluated.

2. The d=t=srmined o>rganization is justified and =2valu-
ated for a near optimum organization which satisfies
three of th2 initial design goals: a) high speed; b)
low cost; c) systam flexibility.

3. Feasibiiity cof such a system is discussed in two
ways: a) ga2n=2ral discussion of such a system in block

diagram and flowchart levsl; b) detailed discussion of

the system.

REVIEW OF LITERATOURE

A data network which consists of a namber of clos23
loops around which data circulate was discassad by Pierce (1)
and Kropfl (2). The network used asynchronous nultiplexihg,
buffered switching and a distributa2d control system. In this
loop switching system, asers are connected to the network by
stations vhich are interconnected by a local loop
transmission line. An experimental network has been imple-
mented by interconnecting two laboratory computars throagh an
addressed block data transmission system consisting of a
single loop. The actual hardware and operatiosns of ths
network is discussed in a paper by Coker (3).

There are several communication networks being develop23
and constructed following the loop technigu=. One 2f these
is the Distributed Compa*ing System (DCS) Jevaloped at the
University of California, Irvine by Farber 2t al. (%), (5.
{6y, (7). The main objective of the DCS is t> provide reli-

*

able, faii-soft satrvice at relatively low cost *o a largs
class of users with modsst requirsments, The jistributed or-
ganization of this system incorporates redundancy and
isolation in both the hardware ani softwar=s. R2liability is
achieved by minimizing the probability of a total systam
failure, using isolation and keeping local failures from

spreading and causing a global failure, and using r=2duniancy

to negate the effacts of local failures.

Th2 DCS hardware system is a collection of compating
systemr components connected to a digital communication ring
by ring interfaces., The communication ring ssrves as a
unidirectional information path and tha ring iaterfaces
assist in information routing. The DCS software system is
process orientei, that is, all activities are carried out by
processes rather than physical hardware address.

A packet svitching daté commenications natwork is being
developed at the National Sacurity Ag=sncy for r2source shar-
ing and the futurs development of distributed processing ani
filing systems by Hassing et al. (8). The design goal of
this system is to interconnect a large, h2%t2r>3j2neosus jcoup
of computers, batch terminals and conversational terminals to
form a general purpose network of computing ra2sourcsas, This
system consists of thres nodes situated arounl =2ach of two
concentric rings running in opposite directions. This ar-
rangement provides for redundancy in the netwdrk to protect
“¢he ring connectivity. The ring interface at each nods is a
hard-wired device called a Network Interface Port (NIP}.
This NIP in turn interfaces +o a minicomputar which is re-
OrC nsi#OoCK protocol and activities on the one
hand, and for interfacing some devics or dsvices to thz
network on the other.

Hayes (9) studied th= performanc2 of an 2xp2rimental

computer communication network which is currently b2ing de-

signed and built at Bell Labs. Th2 network consists of
synchronous digital transmission lines connected in loops to
a central swvitch. User traffic enters the system through
multiplexers connscted t5 the synchronous linss. The central
sWwitch has the two-fold function of routing aad controlling
traffic. The system consists of sa2veral loops connact2d to a
central switch. The system is accessed through a Terminal
Interface Unit (TIU) which is connected between the usar
terminals and the loop. In addition to forming an intarface
betveen the user and the loop, the TIU also does signaling
which plays a role in switching calls and controlling the
traffic flow.

All of the loop systems mentisned rely on the Bell
System T1 carrier technoslogy. The T1 carrisr is a Pulss Coie
Modulated (PCM) respeaterized voice channel system d2signed
for high grade long distance communications. Because
transmission in this systam is digital it lenis its=21f well
to high speed data commanication applications.

There are %“wd> common techniques which are used for
achieving multiplexing on a loop connected systz2m. Thase are
Demand Muitiplexing {DNM) and Synchronous fime Division
Maltiplexing (STDM). In STDM each terminal is assigned 2
time slot which recurs periodically. The t=2rainal aay
multiplex data into its dedicated slot and/or receive-jata

only from this time slot. In contrast, for D4, data is

10

multiplexed on th2 line asynchronsusly into unoccupied time
slots. If a terminal his a message to transmit t5 the net,
it inserts the message into the first emnpty slot. The delay
performances of these tio techniques are compared by Havyes
{(9) . His simulation results on th2 Bell Labs loop connectel
system show that DM is superior to STDM in terms of delay
performances,

In any of these systa2m using a loop topology, the numbar
of interconnections regunirel to allow zach terminal to
communicate with any other terminais is minimized. In addi-
tion to this obvious advantage, another b2nefit is present
since the number of nodss on a loop may b2 increased with no
significant increase in line requirement. Routing is also
considerably simplified because any node can r=zach any other

node directly, as long as there is sufficient redundancy to

keep the loop intact.

11
RESEARCH PROJECT OVERVIEW

The high speed data network is a recirculating data
communications system formed by connecting lians rep2atars
along the line., Onz of these repeaters is the master
repeater which is a lina zontrollsr as well as a general
repeater. The functions and the design of thasz repeaters
and the master repeater has bean da2scribed by Koenck (10).
However, some of th2 features involved in the respeaters and
the master repesater mast be introdaced briefly for discussing
the interfacing problems.

The network is implemented using two shislded, twisted
pairs for the transmission line forming a closed loop. Each
twisted pair is used as a transmission path s> that the one
cable can have transmissions going in either direction de-
pending on the physical environment. The signal fraqua2ncy on
this transmission line has been set at 1.584 ¥Hz which makes
the net compatible with the Bell T1 carrier system. This
allows the loop to be extenied for long distancs coamuanica-
tion by inserting T1 repeaters at regular intarvals on the
transmission line.

The information passing along the net can be thought of
as a string of binary values. This string of bits is logi-
cally though+ of as b2ing divided into 'slots' o>f 160 bits
each. The information that is represented by the bits in a

slot will be called a *message'. A slot is farther broken

12

into 16 pieces. Each of these pieces begins with two charas-
ter synchronization bits '10" followed by an 2ight bit data
byte. The two synchronization bits at th2 beginning of =ach
byte are used by the repeater to insure correct assembly of
the signal from the lins, They are insert=d by the repeater
as the data is put on the line and are stripp2d off by the
repeater before it passes the data to the interface.
Therefore, a byte, within the interface, consists of 8 bits
and the basic m2ssage, a time slot, consists of 16 bytas of 8

bits each as shown in Figure S.

PRC 10 bytes data |SEQUENCE | SOURCE | DEST. |OP CODE| STATUS

—-

direction of data flow
Figure 5. Organization of a time slot.

The first incoming hyte of a time slot is the STATUS
byte containing flags which indicate the status of the time
slot and the follawing OP CODE byte specifies the type of
message represented by th2 slot. -Depending upon th=2 OP CODE,
the DEST byte can indicat= 3 physical devics a3irsss or a
process name, definzd on the net, to which the message is di-
rected. The SOURCE is th2 senler identification indicating

where the message originated. The SEQUENCE byte is us2d *o

13

provide sequencing information to the recsziver. Th2 follow-
ing ten bytes are the actual data and the last byte, the
Polynomial Redundancy Check byte, is used £or detecting
transmission errors between thes pravious repeater and the
current repeater station.

The loop has 32 of these 160 bit slots ia continudus
circulation, carrying information from on2 noi= to another.

Also, there is 3 mest2r synchronization slot, two bytes in

length, consisting of a binary 1 followed by 19 zerss. This

mast

®

L syncC pulse is gemerated in the master repeatar and is
sent along the net to synchronize the repesaters signalling
the beginning of the 32 tim2 slots. This azounts to> a total
capacity of 514 byt=s or 5740 bits, in continudous circalation
along the loop. Since the data rate of th2 loop is fixed at
1.544 Mhz, the total loop d=2lay amounts to 3.3 as. That is,
a message originating from a nosde will be r=turning to the
original sender in 3.3 ms.

Up to 16 repsaters will b= provided oa th2 net and these
repeaters obtain their operational power directly from the
linpe that provides the data path. In this way, the op=aration
cf the nest is i;depéidert 0of the local powar c-s5ndition of any
repeater station.

The repeater also has the following functions as w2ll as

those already d2scribed:

1. Regenerate the incoming data aftsr it has been

14

distorted by nois= and attenuation on ths transmission
line.

2. Reep count of bytes pass=2d so that tiames division
multiplexing can be implemented.

3. Supply enough delay that a whole tim2 slot can be
held in the repeater.

4, Control transmission srrors.

5. Recogniz2 when the net is in test condition and in-
dicate when errors have occurred during the ta=st.

6. Provide data paths so that a message cTan b2 either
received or transamitted at each interface.

7. Transform the zoled signal from tha line t> a binary

code.

8. Generate a clock signal from the incoming codad data
strean.
9. Transmit the binary data back to the line in the

phase code ausad on the line.
In addition to the functions of a rep=atar, th2 master
repeater also has following functions:

1. Generate master sync pulses:

-

Z. Buifer the incoming m=2Ssages to aiiow For variabie
amounts of delay on the line.

3. Log and display occurrenc=as of errors on tha line.
4. Generate and check start-ip test pattsrns.,

5. Indicate line failures.

15

Connected to each 2f these repeaters and to th2 master
repeater is a general purpose intarface. The g=neral parpose
'interface has b2en designed with three goals in mnind: 1) high
speed 2) low cost 3) systam flexibility. The interfacs is 1
hardware unit through which a device attached to the
interface can comaunicate with any other devices or processss
which are currently active on the nest. Dir=ctly connected to
each interface is a combination of devices such as
teletypes (TTY), line printers, card readers, CRT displays
and/or a minicomputer. Since thes2 ievices and the interface
require an external source > f power, they may fail to operate
locally. Howevar, this local power failure will not cause
the complete loop to fail as the repeaters are powered inde-
pendently from th2 line itself., Pictorially, the loop may b2

viewed as in Figure 6.

16

\

i

interface

4 P
minicamputer
interface
¢ =
———\\ master
BR repeater
/ station
interface
minicomputer
/

/

TTY

=
BR
—®
storage
to
CRT

Camputation
Center

Figure 6. The ISU high speed data net.

17
THE INTERFACE
Problem Considerations

Each repeater has a 9 bit binary counter for counting up
to 512 characters and a 4 bit binary counter for counting tan
binary bits. The two bytes master synch pulses generat2d by
the master repeater reset these counters to establish the
repeater synchronization. The low order four bits 2f the
character counter indicate the current message byte and the
high order 5 bits indicat2 one of the 32 iiffara2nt tims
slots. Synchronization of the interface op=rations to the
repeater is to be done by looking at these two counters.

Since one time slot is 16 bytss, every 16 bytes of delay
a new time slot comes into a rapeater station. Whenever a
new time slot comes intd> the repeater station, the low order
4 bits of the character counter will be updat=3 to 0000 and
the uppsr 5 bits will be increeented by on2, indicatingy the
incoming time slot number. An interface can take only one
byte of the message at a time from the associated rzpeater
station and can transmit only one byte at a time to ths asso-

ciated repeater staticon. In order to allo¥ the iate ce

]
M

s
time to complete processing, based on the rasult of ths
polynomial redundancy check in the last byt2 of a time slot,
the repeater will buffer 17 bytes in a shift register thus

providing a 1 byte delay between ra2ceivingy th2 last byte of a

18

slot and sending of the first byte to the rep=sater. This is
shown in Figure 7. This provides a total tim2 of 17 bytes >r
110 microseconds from receiving the STATGS byte of a2 slot

until the interface sends a new STATUS byts %> the repesater

for that slot.

parallel { inside
out repeater

acarial in 29 .
BEIE T el 20 bit] 14 x 8 bit || 8 bit | Se¥ial out
parallel parallel

Pigure 7. Repeater shift registers.

This implies that the interface needs to handls all
interfacing problems such as checking STATUS and OP CODE
bytes, checking different tables, receiving a message,
updating tables, updeting the STATUS byte,secondis. Taking
etc. within 710 micro into> account the complexity of thae
interfacing problams, no currently available general purpos2
processor can handle thase problems within 110 nicraseconds
for a reasonabls price. An attempt has bz2n made t> design a

fast general purpd>se processor using standard TTL components.

19

As a result, a processor with a 500 ns instruction execution
time has been designed. However, even this speed was not
fast enough to handle these fairly sophisticated interfacing
problems.

Therefore, three main design goals have b22n s2tup for
developing the interface. These are:
1) high speed: The interface must be fast snough to handle
the complex interfacing problems within 110 micro sacoads.
2) low cost: Since one >f the main objectives of the loop is
to achieve a low incremental cost of adding a station to the
loop, the price of the inter face must be cheap enough to me2t
this requirement.
3) flexibility: since the data loop is still in an 2xperimen-
tal stage, those algorithms related to the defined
interfacing functions must not be fixed. This implies that

the interface must be flexible for future modification.
Status of a Time Slot

In general, th2 stations on a data communication link
are quite some distance apart and the link is th2 sd>le means
of communication among them. This requires that the data
communication link must carry, in addition to the m2ssage
data, the control information needed to coordinate station
activities, e.g., the acknowlsdgem2nt sentenc2 advising an

originating station whethar a message sentencs was received

20

correctly. This would seem to be an obvious, even trivial,
observation, but in fact this situation leads to the need for
quite elaborate protocols to control communicatica and to
distinguish data from control information.

This sharing of a facility for use in both control and
data flow activities is a vary unnatural practice in the
world of computing. In computer design, data buses are
almost isoclated from thz zontrol lines, both f£or reasons of
speed and for simplifying control logic. 1In 3ata communi;a-
tion systems, on the other hand, it is necessary to sasnd
both data and control information in the same chann2l s5 as
to minimize channs2l costs and to permit the use of existing,
videly available, channels without any special modifications.
Most commonly available communication faciliti=ss ar2 ssrial
in nature. Even on parallel communication links th2 addi-
tional bit paths are almost invariably us23 fsr additional
data bits rather than f5r control purposes. Thus, nearly all
data communication technigues are based on separation of con-
trol from data signals in the time domain rather than in th=

frequency or space domain., Because of this tamporal sa2para-

tion of control and data informaticon, and alss becau

~ L]
1, ald ise Ral

1y
stations may shar2 a communication link, a station can not
simply emit messages onto the link at arbitrary timss. It
must menitor th= link traffic and send messagas only at ap-

propriate times, Farther, messages must be appropriately

21

structured so that the receiver can distinguish control in-
formation from data. The appropriate times and message
structures are defined by a protocol that is establisheld to
allow orderly data flow among the stations that use a data
communication link.

This set of rules, which govarns the activity on a com-
munication link, is summarized in terms of th2 following
classes of items:

1. data communication control procedurs
2. da*ta link control procedure

3. 1line control

4, 1line discipline

S. message discipline

The state of a time slot is specified by the STATUS
byte, the first byte of a time slot, according to the code

shown in Figure 8.

SPECIAL ACK ERROR NACK FULL TEST

Y

£
cr
4
Q
3]
Q
h
[T}
')
cr
']
=h
e
]
«

Figure 8. STATOS information.

Each bit contains the following information:

TEST; When this bit is set, it indicates that the time slot

22

is in test condition by the master repeater station and the
time slot does not have valid data for the interfacs.

FOLL; This bit specifies that the time slot is carryiag a
message.

NACK; This bit specifies the result of the transmission on

that time slot. W®When this bit is set, it indicates that th2

2]

essage on the tise slot was not raceived by ths rejuired
destination(s).

ERROR; This bit is set when any‘transmission error has been
detected either by poiynomial redundancy check or by charac-
ter sync pulses check or both.

ACK(EXIST); This bit indicates the result of a transmission
by setting it when the meséage on the time slst has been
received by the raquested destination(s). Wha2n both NACK ani
ACK bits are set, this indicates that som2 >f the ra2gquassted
destinations received the message correctly and rest of them
could not. This happens for the case in which multiplz
destinations are requested such as a broadcasting m2ssage.
SPECIAL:; When a transmission =rror has b2z2n 3etected 2n a
time slot which carried a regular message to a proc2ss, this
bit will be used for ch=2cking if the error has b=2en detected
after the destination or before the destination. If the
error has been detected bzfore the destination, the senier
retransmits the message. Otharwise, retransmission of the

message is not ne=ded, because the required dastination al-

23

ready received the message. This provision has been made to

prohibit multiple communication contracts for a sinjyle comma-

nication contract requirement.

Different combinations of these bits and the related in-

formation are shown in Table 1.

. - — - > ——— — =t — . —— - ——— ——

The time slot is in test condition.
The time slot has a valid message.
Th2 messag= on this time slot has

not been acknowledged by at least

Some of the reguired destinations
received the message on this tims slot

and some of them could not recsive

The message on this time slot is
acknowledged by the requestad jestination{sj.

Transmission error has been detected

Table 1. STATUS information
STATUS Information

XXXXXXxx1
xxxx0x10
xxxx0110

one requirzsd destination.
xxx10110

the message.
xx010010
xxxx1x10

5n this time slot.
xxi100010

The time slot is being used to check
whather the previous transmission error
on this time slot has been d2ta2cted
before or after the requested Jestination.

24
FPunctional Descriptions

The interfac2 developed as shown in Figure 9 is a
multiprocessor system which has three small processars work-
ing concurrently for different operations. These thre=
processors are an Output Sequencer, a Téble Matcher and a
Micro-processor.

The Micro-processor is a commercially available low cost
single chip LSI general purposs computer. Th2 Hicro-
processsr is responsibla for data transfer to and from the
devices that are connected to an interface. It alsd must
provide a partial scan of the text that is eontered from a
device to recognize certain commands or requests for sarvics,
At the very least, these need to include some methoi of re-
source request and resource release capability. The Micro-
processor also must handls the breakup of a ma2ssage into 10
byte sections that Can be put into a slot as well as the
reassembly of these sections at the destination., When a slot
is fillied, the source, jestination and op cod2 information
must be provided by the Micro-processor befors the message is
marked ready for the interface to send.

The Output Sequencer transmits a message from a seslect2i
source buffer under the control of the Table Matcher, one
byte at a time, when the data transmission is required. Th2
rest of the interfacing problems are to be handled by the

Table Matcher. The Table Matcher is particularly effective

25

serial in serial out
— ™ repeater station >

receive transmit
enable

Y ; I

Table Output
Matcher Sequencer

[Tlow ...
1

P P
. R R 512 bytes
interrupt o) 0 semiconductor
M M RAM
T2 ps
[|
1
Y
Mi 1K to 4K bytes
———— >
processor core memory
VA X N\
attached
TTY CR P CRT devices

Fiqure 9. Punctional blcck diagram of the interface.

26

in searching table entries in memory sequentially. A success
or failure indication as well as the match location in the
table will be returned when the Table Matcher finishes a
table lookup. During periods of time in thes processing of a
slot when the Table Matcher is not needed by ths interface,
it will be available to the Micro-processor.

Three different types of memories, a cors memory, a
semiconductor random access memory and a programmable read
only memory are used in this interface. A 512 byte random
access memory with 60 ns memory cycle tim2 is the actual coa-
nmunication regisn among the Micro-processor, Table Matcher
and Output Sequencer. Memory service requ2sts by thess thrse
different processsrs are served on a first come, first servsa
basis. The Micro-processor for most applications will be the
Intel Micro Computer (Intz2l 8080) which has a 2 microsaconds
machine ins4ruction cycle time and an 8 bhit data bus and a
separate 16 bit address bus. Therefore one can expect that
this Micro-processor will access the memory evary 2
microseconds when the Micro-processor is s2xecuting from this
memory.

The Output S2quencer will access this memory every 6.5
microsecords wh2n data transmission to th2 net is required,
because the time difference of the two adjacent data bytes is
6.5 microseconds. The Table Matcher is the processcr which

places the greatest demand on this memory. In its busiest

27

state, such as the table searchiag state, the Table Matcher
will access the memory evary 400 ns. Since thase threz2
processors are working concaurrently on the same memory and
memory service requests are to be served on a first come,
first serve basis, th2 worst case memory sarvics waiting tine
of a request is twice the memory cycle time or approximately
400 ns.

A 1K to 4K core memory is used for the program memory
for the Micro-processor as well as the buffer area for the
attached periph=ral devices., The present memories, FABRI-TEK
MM 4096 x 24 - 1.75, have a memory cycle time of 1.75
microseconds. The Micro-processor can access either the
semiconductor random access memory or this cores memory de-
pending upon thz requestel memory address. Ia other words,

for the Micro-processor, these two different memoriss may b2

L]

agarde
egarce

[#Y]

as a si

13

31 memarv which hag consecutive addracces
Ji2 Rell2ry whiclh 2 on

T wwwy O Awiam oo

t

ith the semiconductor memory to have addrassa2s from 0 to 511
and the core memory t5 have addresses 512 to 1023(4507). The
core memory can be accessed only by the Micro-processor.

There are two separate programmable r=2ad osnly aemories
to govern the Table Hatchar operation and all other
interfacing operations. On2 has 512 bytes (12 bits per bytz)
which will contain 20 different encoded proceiures to direct
the interface operations depending upon the processing

requirements to be ione. The other has 256 bytas (12 bits

28

per byte) which contains 40 basic functions that will be used
as branch and return subroutines by the above procedures.

The procedure routines in the bigger ROM are basically con-
posed of a sequence of subroutine calls to the smaller ROHN.

These two separated programmable read only memories will be

discussed in detail later.

Types of Messages

There are 8 classes of messages that can be sent and
these classes can be divided into three groups which include
regular messages, systemn messages and special messages de-
pending upon the destination (s) accessing modes. The low
order three bits of the OP CODE byte which is the second byte

in each time slot are used to indicate which type of message

is being sent.

Reguiar_ Hessages

These are messages for one to one data communication be-
tween a sender and a receiver, which is mostly used for gen-
eral data ccmmunication on the net. Two different reqular
message types are provided as follows depending upon the des-
tinaiion accessing modes.

a) regular message to a process name: Only one device which
has the requested process in it can receive this message even
though more than one matching process is active on the net.

The first statiomn in which the requested process is available

29

Table 2. OP CODE and message types
OP CODE Message Type
xxxxx111 a broadcast message to all active
stations
xxxxx 101 a system message to a 'process’'
xxxxx001 a system message to a device address
xxxxx100 a regular message to a ‘'process®
xxxxx000 a regular message to a device address
xxxxx0 10 a special message to synchronize
system destination buffer for a
broadcast message
xxxxx110 a special message to synchronize
system destination buffer for a
. systern message to a 'process'
xxxxx011 a

special message to free system

destination buffers after a systenm
message transmission is not satisfied

30

receives the message and makes a contract with the senier of
the message for further communications. In other wards, the
interface, where the available matching process exists,
updates the allowed source byte associated with the process
name to the sender's identification and transaits the devics
address, where the process exists, in the 6th byte of the
same time slot to the original senjer. Therefore, subs=quent
communications between the senier and the rec2iver can be
made by the device address instead of the process name.

b) regular message to a device addiress: Only the device in-
dicated on the destination byte (the third byte of =2ach tim2
slot) can receive this message when the sourc2 is allowed ani
the assigned destination buffer to that devic2 is empty. If
the message was correctly received by the intarface to which
the requested device is attached, the receiving station
interface will set the ACK bit on the STATUS byte of the time
slot to inform the sender that ths transmission is satisfieil.

System Messages

In the group of source buffers and destination buffers
in each interface, one 15 byte system source buffer and one
15 byte system destination buffer are provided to handle
system messages. Every system message is to b2 originated
from a system source buffer and sent to a system destination
buffer. Here a system message is defined as a nessage which
nust be délivered to the reguired destination through 2a
system destination buffer independient of th2 state >f the reo-

quired destination. Three different classes of system

31

messages are providad depending upbn the destination
requirements as follows:

a) system message to a device address: only the station whers
the required device exists can receive this message if the
system destination buffer of the interface is availabls to
receive the message,

b) system message to a process name: Every station which has
the required process must copy this messags in the system
destination buffer to satisfy the transmission of this mes-
sage., Upon receiving this message, the status of the filled
buffer must be updated from 'empty' to '£full and not ready*
until synchronization of these buffers is requested.

If there is a failure in receiving this messsage by any
station which has the matching process, the original sender
can distinguish this fact from ths returning STATUS ani OP
CODE information >f the time slot and will transmit the2
system message for a fixed number of times. The number of
retransmissions of this massage can be chackei 5n a
transmission counter which is a 4 bit binary counter providai
inside the Output Sequencer of the interface. When every
interface which has the matching process has raceived this
message, the original sender transmits a special message to

synchronize all the system jestination buffesrs which receivad

the message.

32

c) broadcasting m2ssage t> all active stations: Every
station currently active on the net must receive this
broadcasting message to satisfy th2 requasted broadcasting.
Upon receiving this message, the status of the filled buffer
must be updated from ‘'empty! to *full and not r=ady' until
synchronization of these buffers is requested. TIf there is
any failure in receiving this message by any station, the
sender will also retranszit this bhroadcasting n2ssage for a
fixed number of times which is specified on the transmission
counter. Since there is only one system source buffer, one
transmission counter can be used to count the number of
retransmissions for both broadcasting message and system mes-
sage to a process. When avery station has recsived the
broadcasting message correctly, the original sender will

transmit a special messags to synchronize 2ll the system des-

tination buffers.
Special Messages
There are three different classes of special massiges

wvhich are used to synchronize the system d=stination buffers

depending upon the system message transmission results:

(8]

aj) special message after 32 broadcasting is satisfield: When

oo

every station received a broadcasting message correctly
within a fixed number of retransmissions, the original send=ar
of the broadcasting message transmits this sp2cial mnessage to

enable all system destination buffers. ZEvery interface

33

updates the system destination buffer status from *full and
not ready® to 'full and ready' upon receiving this special
message.

b) special message after transmission of a system messige to
a process name is satisfiad: When every station whare the
requested process is resident received ths systam m2ssage to
the process correctly, the original sender will transmit this
special OP CODE %o synchronize those systea buffers which are
filled with the transmitted syster message. Every interfacs
which received this system message updates ths system jesti-
nation buffer status from 'full and not ready' to *full and
ready® upon receiving this special message.

c) special message for ths case in which class b) or class <2)
system message transmission is not satisfi2d: Transmission
of a broadcasting m2ssage can be satisfied only if all the
active stations received th2s message and transmission of a
system message t£o0 a process'ﬁame can be satisfied only if
every station where the raquested process =xists received the
message, If eithar of the message requirements has not been
satisfied after a fixed number of trials, the sriginal sends2r
transSmitsS this spacial message to synchronize the related
buffers. In other words, even if 2ither of theose
transmissions has n>t been satisfied, there may be som2
system destination buffers which are already filled with the

message and the related buffer status has been updated from

34

‘empty' to 'full and not ready'. These updated buffer status
must be released, because re-updating these buffer status
from *'full and not ready' to 'empty' is not possible other-
vise.

To prevent a type of a permanent blocking of these
system destination buffers, thase special aa2ssages are
regenerated and transmitted automatically by the original
sender if any transmission =2rror has been detacted o5n a spe-

cial message, This will be discussed in detail later.
Tables

The 512 byte semiconductor random access memory is pri-
marily to be used for 10 different tables, buffers and inter-
rupt information storage.

Source Buffers and Destination Buffers

Two different sets of buffers are to be pravided‘in th=
random access memory. On2 set is the source buffers which
will contain data to be transmitted from the device attachel
to the interface to some other device(s) or process namaes.
The other is a set >f destination buffers which will r=aceive
the incoming message for the devices or process names which
are currently active in that station. In these two sets of
buffers, a system source buffer and a systesam 1=2stination buf-

fer are reserved respectively for handling the system type

messages and broadcasting messages. A buffer >f any type is

35

15 bytes long and the namber of buffers is changeable without
changing any hardware.
Source Buffer Address Table_ (SBAT)

This table has the beginning addresses of the source
buffers. Two bytes are used to specify the beginning address
of each buffer. This SBAT is organized as shown in Fijure

10. Since buffer address=2s can be changed, the buffers can

be located in any places inside th2 random access m2mory.

high order 8 bit low order 8 bit
address address

n system buffer system buffer
n+2 buffer 1 buffer 1
n+21i; buffer i buffer i

Figure 10. Organization of SBAT.

This table has the beginning addresses of tha destination
buffers. As in SBAT, two bytes are usad to sp2cify ths be-
ginning address of each baffer, This DBAT is organized as
shown in Figure 11. Since buffer address2s zan be changed,

the buffers can be located in any place insidz2 the randonm

access memory.

36

high order 8 bit low order 8 bit
address address

n system buffer system buffer
n+2 buffer 1 buffer 1
n+2i buffer i buffer i

Pigare 11. Organization of DBAT.,

Buffer status associated with each buffer is stor2d4 in
the Source Buffar Status Table or the Destination Buffer
Status Table in the random access memory depending upon the
type of a buffer. This buffer status must be check2d by th2
interface befor2 moving data into a destination buffer or
transmitting data from a source buffer and also must b2
updated properly after moving data into a destination buffer
or transmitting data from a source buffer. Transitions of
buffer status will be considered separately d=spending ﬁpon

the type of a buffer.

This table has infrrmation abdut the Status of Sotrce
buffers. The low order two bits of each byte in this table
are used to indicate the three different states of a source
buffer which are 'empty', *full' and *transamitt=2d4'. These

are specified as 00, 01 and 11 respectively. When the

37

interface is processing a transmission routine, the interface
needs to find a source buffer ready to be transmitted. As
soon as the interface transmits the message which is in the
selected source buffer, the source buffer status must be
updated from 'ready' to 'transmitted®.

When the message originally transmitted from the source
buffer returns to the originating station without
transmission errors, the interface loads the first 6 bytes of
the returning message into the original source buffer and
interrupts the Micro-processor with a proper interrupt code.
Upon receiving the interrupt, the Micro-processor looks at
the STATUS and OP CODE byte of the source buffer in which the
first 6 bytes of the returning message have been loaded and
determines the result of the transmission. If the
transmission was satisfied, the Micro-processor will update
the buffer status from 'transmitted?! to

ftomnéw !
eRply

« If the
transmission wvas not satisfied, a decision on the further
transmission of the message must be made by the Micro-
processor. This decision is to be made considering the
restored STATUS and OP CODE byte combinations which will be
discussed later. The organization of this SBST is shown in
Figure 12 and the transition diagram of a source buffer

status is shown in Figure 13,

38

|
n system source buffer |
)
ntl buffer 1 |
L
) |
n+i buffer i i
]
——
low ordexr
two bits

Figure 12. Organization of SBST.

ready

\
\
\

LY " transmitted
ouLIer /

N\
filled agam \
empty

< — — — — yupdate by Table Matcher

<«———— update by Micro-processor

Figure 13. Transition diagram of source buffer status.

39

This table has information about the status of destina-
tion buffers. Th2 low order two bits of each byte in this
table are used to indicat=2 the status of a Jestirnation buffer
such as 'empty', 'full and not ready' to proca2ss and *full
and ready' to process. These are specified as *'00°', *01°7,
and '11' respectively. When the interface is processing on=2
of receiving rouatines, the interface needs to check the
status of the buffer assigned to the requsstel device or ths
requested process, to datermine whether the puffer is avail-
able or not, before loading data into the buffer. The
interface can 1oad the data into the destination buffer only
if the buffer status is empty. After loading the data, the
interface needs to update the buffer status from 'emptv' to
'full and ready' or to *'fall and not ready' d=pending upon
the type of a message lsaled. Dirsct updating from 'eapty'
to 'full and ready*' is allowed for a regular a2ssag2 and a
system type message to a physical device address.

For a system mzssage to multiple destinations, such as a

broadcasting typ=2 system message Or a system nessaga td> a

process, tais Girect a

gl

dating is not alloded because more
than one system destination buffer needs to b2 fillsd with
the message to satisfy the transmission of the message. In
other words, it is not allowable to enabla a destinatiosn buf-

fer by updating the status from 'empty' to *full ani ready'

40

directly vithout considering the status of other destination
buffers which must be filled with the message. Therefore,
for this type of message, when the buffer is *empty'!, the
interface will load the data into the buffer and update the
buffer status from 'empty' to 'full and not ready' temporari-
ly and x2it for the result of the transmission of the ames-
sage. If the message has been loaded into all the required
destination buffers correctly and the buffer status has been
updated from ‘empty' to 'full and not ready', the interface
from which the message was originally transmitted wili
transmit a special message to synchronize the buffers where
the messcge has been loaded. Upon receiving this special
message, the related buffer status is to be updated from

'*full arnl not ready' to process to 'full and ready' to
process.

However. when the transmission o

(]

the message is not
satisfizd, for a fixed number of retransmissions, the
interface in the originating station of the message will
transmit a special message to clear the buffer status, which
is updatzd from ‘*empty' to *full and not ready*, from *full
and not ready' to ‘empty’'.

Transition of a destination buffer status from 'full and
ready® to 'empty' is to be done by the HMicro-processor when
the Micro-processor has finished the required processing of a

buffer vhose status was *'full and ready' to process. This

41

synchronization of system destination buffers will be dis-
cussed again as well as the number of retrials for the satis-
factory transmission of the message. The organization of
this DBST is shown in Pigure 14 and the transition diagram of

a source buffer status is shown in Figure 15.

l
n system dest. buffer]
1
n+l buffer 1 :
]
n+i buffer i i
|
| S
low order
two bits

Fiqure 14. Organization of DBST.

This table has the beginning address of =2ack tabls, num-
ber of entries and the amount of iancrement for next eatry ia
the table. Two consecutive reserved words{on2 byte per worlj
are used for the beginning address of each tabls. The first
reserved word contains the high order 8 bits ajdiress and th2
following byte contains the low order 8 bits address.
Therefore the beginning address of each table is spacified in
a 16 bi+t address space where only 9 bits are used to specify

the physical address of each table in the 512 byte RAN.

42

———————— »/ full
& ready

<« — — — ypdate by Table Matcher

<«———— update by Micro-processor

a; received a system message t0 a process
or a broadcasting message.

b; received a special message after a systen
message transmission is satisfied.

C; received a regqular message Oor a sSystem
message to a process,

d; received a special message after a systenm
message transmission has not been satisfied.

Figure 15. Transition diagram of destinaticn buffer status.

43

One reserved word broken into two parts is used for the
number of entries and the amount of increment for the next
entry in each table. The number of entries in the table is
stored in the low order S bits in the third byte and the
amount of increment is stored in the high order three bits in
the same byte. The maximum allowable size of a table is,
therefore, 256 bytes wvwhich has 32 entries with 8 bytes of an
increment for the next entry. The Table Matcher can access
this TAT for preparing a table lookup by direct addressing
mode instructioans provided, such as LOAD or STORE. Having
this TAT, all the related information can be changed without
changing any hardware. The reserved memory locations and the
associated usages are shown in Appendix D.

This table has information about the time slots in which
messages have heen transmitted to the net by the interface as

well as the source buffers from which these messages were ob-

tained. This TSAT is organized as shown in Figure 16.

44

time slot number source buffer number
i I
n Active 1 TS1 spL, | Bl
1 t
n+2 Active | TS2 SPL ; B2
. . | . |
2
nt+21 | Active ! TSi SPL : Bi

Figure 16, Organization of TISAT.

As explain2d earlier, there are 32 different time slots
specified from binary 00000 to binary 11111. The currant
time slot number active on the associated rspsater station
can be 6btained from the high order 5 bits of 9 bit charactesr
counter provided in the repeatsr station. Th2 high orier 3
bits (Active) of a time slot number are us=23 for indicating
the current status o2f the byte. In other words, vhen these
Active bits are on, the low order 5 bits of the tims slot
number byte contains a valid acknowledged time slot nuamber.
This provision has been made to distinguish the time slot
number 00000 from the empty state of the time slot location.
The following byte of cach time slot number byte contains the
source buffer number which has been transmitted to the net on
the time slot specified in the tim2 slot numba2r byt2. The
low order S bits 2f each source buffer numbar byte are used

to specify the source baffer transmitted on the time slot.

45

Up to 32 different source buffers can be specified in these
low order 5 bits.

The high order 3 bits (SPL) in the source buffer number
byte are used t5 indicate one of the three special messages.
Since the special messages which are used for synchronizing
the syster destination buffers for some system messages are
partially generated inside the Table Matcher and are
transmitted with the necessary source buffer message instead
of criginated totally from a source buffer, some kind of
protection frcm transmission errors on these special messages
should be provided. The high order 3 bits of the source buf-
fer number byte are used for this purpose. When the
interface needs to transmit a special message, the interface
will load 100, 010 or 001 into these 3 bit positions depend-
ing upon the special message transmitted.

The munitipiexing technique used in this svstem 1s 2
restricted demand multiplexing. No time slots are dedicated
to a specific station. However, the number of time slots
which can be used by a station are limitted due to the size
of this TSAT. In other vords, any station can use any time
slot as long as the station has a source buffer ready to be
transmitted and an empty location in TSAT is found. This
provision has been made to provide the flexibility in deter-
mining the number of time slots which can be used by a

station depending upon the communication demands in each

46

station. The communication demands of a station are the
function of the answers to the following questions: "How
often does the station access the net and how much of data
are to to be transmitted from the station in unit time?®

When the interface has a source buffer ready to be
transmitted to the net, the curreant time slot is not being
used by any other station, an empty location ip TSAT was
found and no transmission error has been detected on the time
slot between the previous station and the current station,
then the follovwing operations will be performed by the
interface: store the current time slot number and the ready
source buffer number in the empty location in TSAT; sets the
Active bits; resets the SPL bits and transmits the message in
the ready source buffer to the net. When one of the three
special messages is transmitted for synchronizing system des-
tination buffers, the three 3PL b
or 001 depending upon the special message transmitted.

Selecting a source buffer which is ready to be
transmitted is done as follows. A source buffer pointer
which is a four bit binary ring counter is provided to con-
trol the SBST checking. The current contents of this source
buffer pointer indicates the next source buffer to be
checked. When the Table Matcher needs to check SBST to
select a ready source buffer to be transmitted, the Table

Hatcher initiates SBST checking from the buffer number indi-

47

cated by the source buffer pointer. If the status of the
buffer indicated by this source buffer pointer is not ready
to be transmitted, the Table Matcher will increment the
contents of the source buffer pointer by one and continue
checking the SBST. This process will be repeated until the
Table Matcher finds a source buffer which is ready to be
transmitted or the whole SBST has been checked through. 1In
either case, the contents of the source buffer pointer is to
be incremented by one, indicating the source buffer to be
checked first in the next SBST ciaeckiang. This source buffer
pointer is provided to assign an equal probability to be
checked, éssociated wvith each source buffer. This source
buffer pointer counts up to the number of source buffers pro-
vided in each interface. For example, the source buffer

pointer in a station where 5 different source buffers are

When a time slot that was filled by the interface
returns with a satisfied transmission status, then the time
slot number will be deleted from the TSAT and an interrupt
with a proper interrupt code will be given to the Micro-
processor to inform it of the satisfied transmission of the
related source buffer. When transmission errors have been
detected on an incoming time slot, which was originally
transmitted by the interface, the interface will retramsmit

the associated source buffer without updating this TSAT if

438

the SPL bits in the source buffer number are 000. If these
SPL bits in the assaciated source buffer namb2r are 103, 01)
or 001, the related special message will be generated and

retransmitted with the necessary messages in the soarce buf-

fer without updating TSAT.
Process Name Table (PNT)

This table has the names of processes that are available
in the devices that are attached to the intarface. Each
process name has three associated addresses as shown in
Figure 17: a destination address which indicates the location
of the device in which the process exists; a source adiress
vhich indicates the source identification allowad t>
communicate with this process; a buffer address which

indicates the buffer number assignad to ths process.

process aliowed allowed assigned
name destination source buffer
n Pl D1 S1 Bl
n+4 P2 D2 S2 BZ
n+4i Pi Di Si Bi

Pigure 17. Organization of PNT.

49

Since nultiple process names, i.e., more than one iden-

tical process name in a station, are allowed, all the process
names in PNT must be checked for a required process name.
The allowed source byte is to be used to make communication
contract between a sender and a required process by étoring
the sender's identification in it. If the content of an al-
lowed source bfte is zero, any source can access the associ-
ated process name. Otherwise, only the source identified by
the allowed scurce byte can access the process nane.

Rhen a required process name was found in the PNT
checking, the interface needs to check the allowed source
byte to determine whether the source accessing the process
name is allovwed to that process name or not. If the source
is alloved to that process, the status of the assigned buffer
sust be checked to determine whether the assigned destination
huffer is availablie to receive the message. If the source is
alloved as well as the assigned buffer is empty and no
transmission error has been detected on the time slot being
processed, the interface will copy the message into the as-
signed destination buffer, update the buffer status properly,
apdate the allowed source byte if necessary by loading the
original sender's name in it and send out the‘alloued desti-
nation byte of the accessed process name in the 6th byte on

the sampe time slot.

50

A communication contract has been made between th2 orig-
inal sender and the accessed process name in this way which
allows subsequent communications between thess two nod2s to

be made in terms 9f the device address instead of the procéss

name.
Allowed Destination Table (ADT)

This table has the device addresses, d=2fined on the net,
which are attached to the interface. Each allowed destina-
tion has an associated allowed source and anlassigned buffer.

The organization 9f this ADT is shown in Figure 18.

allowed allowed assigned

destination source buffer
n D1 sl Bl
n+3 D2 S2 B2
n+3i Di Si Bi

Figure 18. Organization of ADT.

The usage and operations on this ADT are the same 2as
those on PNT except that ADT is used for a message to a
device address while PNT is used for a message to a process

name. Every device address specified in 2ach allow=2d desti-

51

nation byte is unique. In other words, no two allowed
destinations are same while multiple processes are allowed in
PNT. When the requested destination was found in ADT
lookup, the allowed source and the assigned buffer status
needs to be checked and updated properly same as in the PNT
case. Practically, the allowed source and assigned buffer of
the Process Name Table and ADT can be overlapped.

Table Updating Table (TUT)

Before the interface begins to operate on the incoming
time slot, the interface needs to check the error bit in the
STATUS byte to determine if a transmission srror has been
detected or not on the time slot. If a transmission error
has already been logged or i1f no errors have been detected,
the interface will select a procedure depending upon the
processing requirement, to continue processing of the slot.

However, during the operation of the selecte

(rY
=

procedure, if
the interface needs to update a table entry, the interface
must not update the table entry right away because at that
point of time the information on which the interface has
worked might not be a valid message. In other words, until
the interface gets the results of the polynomial redundancy
check, even though the current STATUS byte says there has not
been any transmission error, there might be a transmission

error between the previous repeater and the current repeater

station.

52

Therefore, when the interface needs to update a table
entry, instead of updating tﬁat table entry right away, the
interface will store this table updating informationm into the
TUT and wait for the result of the transmission error check.
This information includes updated data, memory addresses
where the updated data will be stored, etc. If no
transmission error is detected, the interface will update the
table entry (or entries) according to the information saved
in Table UOpdating Table. If any transmission error is
detected, the interface will neglect all the information, in
the TUT, obtained from the message and further consideration
of this message is not needed. The interface can access this
TUT by direct addressing mode instructions such as LOAD or
STORE. The reserved memory locations for TUT and the associ-

ated usages are shown in Appendix D.

Interrnpt Information Tahle (IIT
Communication between the Micro-processor and the Table
Matcher is to be done by an interrupt scheme and this table
has interrupt information such as interrupt codes and addi-
tional information if necessary. Whenever the interface
updates a buffer status or fills a buffer or empties a buf-
fer, the interface will interrupt the Micro-processor and let
the Hicro-processor know which buffer is filled, or emptied

or which buffer status is updated respectively. All these

interrupt codes and necessary information will be stored in

53

this table before the interrupt.

When the Table Matcher is not busy and the HMicro-
processor wants to check some of the tables described, then
the Table Matcher can be used by the Micro-processor for a
fast table checking operation. Before the Micro-processor
can enable this idle Table Matcher for its job, the Micro-
processor must give the tabie checking information (such as
beginning address of the table, number of 2ontries of that
table and the number of bytes in an entry increment) to the
Table Matcher by storing it in the IIT. When the Table
Matcher finishes the job for the Micro-processor, the Table
Matcher will give the result of its checking to the Micro-
processor with a proper interrupt code to represent this
result. When the Table Matcher finds a match during the

process of Micro-processor's job, additional information of

iz
[\
13

the memory locations where ti atch was found will be given
to the Hicro-processor through this Interrupt Information
Table.

The interface can detect a power failure of the local
power supply before the povwer becomes unusable for normal
interface operations. Detecting the power failure, the
interface will interrupt the Micro-processor with a proper
interrupt code to denote the power failure.

The interface is to be started by pushing a switch pro-

vided in the front panel by a console operator. When the

54

interface is started, the Table Matcher will interrupt the
dicro-processor with a proper interrupt code to activate the
Micro-processor., These start—ub and shut-down procedures
will be discussed later in detail as well as the related in-
terrupt codes and the instructions. The reserved memory

locations for IIT and the associated usages are shown in Ap-

pendix D.

Processing Requirements

Depending upon the type of message passing through the
repeater station and depending upon the state of the
interface, operation requirements for the interfacing
problens are all different. Therefore, the interface needs
to seilect a procedure which meets the processing requirement
and needs to follow that procedure afterwards. Most of the
procedures can he selected by checking the ingcoming STATUS
and OP CODE bytes while some procedures depend on the state
of the interface such as the procedure to allow the Micro-
processof use of the idle Table Matcher, the shut-down proce-
dure for the case of the power failure and the start-up pro-
cedure to initiate the normal operations of the interface.
Flowcharts for different procedures are shown in Appendix A

as well as a samfple explanation of the interface actions for

the transmission procedure.

55

Different procedures selected according to the process-
ing requirements are described briefly.
Shut-down_procedure: To protect the information curreantly
stored in the semiconductor random access memory from local
power failure, an automatic shut-down procedure is provided.
When power goes down, a built-in power failure detection
device will detect this power failure and hold the power for
a required period of time. During this time, the Table
Matcher will free the time slots entered in the TSAT of that
station and the Micro-processor will be interrupted to dump
the current information in the semiconductor RAM to core menm-
ory. This way, information stored in the semiconductor memo-
ry can be protected even in the case of power failure.
Start-up_ procedure: Initiating the interface functions will
be done automatically by the start-up procedures. When the
normal aneration of the interface is reguested on the front
panel START switch, operated by the console operator, the
Table Matcher will interrupt the Micro-processor to enable
the initiation procedure of the interface. Upon receiving
this interrupt, the Micro-processor will transfer the neces-
sary information, to be stored in the high speed
semiconductor memory, such as table address, table informa-
tion, previously saved information from power failure,
process names, etc. When the Micro-processor finishes this

procedure, it will inform the Table Matcher of this fact.

56

Then the interface will complete initialization and enter

into normal operation mode.

Allow Micro-processor_ to_use_Table Matcher: As discussed be-

fore in the Interrupt Informationm Table section, when the
Table Matcher is idle and the Micro-processor has a table
checking job, then the Micro-processor can enable the Table
Matcher to do the Micro's job for high speed checking opera-
tion. When the Table Matcher finishes the job for the Micro-
processor, the Table Matcher will give the result of its
checking to the Micro-processor with a proper interrupt cods
to represent this result.
Transmission Error_procedure: Transmission errors on the net
can be detected by either polynomial redundancy check or by
character synchronization pulses. If any transmission error
has been detected on a time slot, the station which detected
the transmigsion error ioads its station number on the desti-
nation byte of the time slot, resets the log bit and sets the
error bit on the STATUS byte of the time slot. The master
repeater station of the net, then, logs the error and sets
the log bit of the time slot. When the time slot with
transmission error returns to the originating interface after
logging the error, the interface retransmits the message
except for the case of a regular message to a process nane.
For the case in which a regular message to a process has

been in error, the originating interface checks if the

57

transmission error has been detected after the requested
process or before the requested process. This can be done by
retransmitting the message with the SPECIAL bit of the STATUS
bfte on and checking the returning SPECIAL bit. If the
transmission error has been detected after the requested
process received the message correctly, the SPECIAL bit in
STATUS byte of the returning message will bé reset and ACK
bit is set by the station where the requested process is.
This indicates the satisfactory transmission of the message
even though errors have been detected. If the error has been
detected before the requested process received the message,
the SPECIAL bit in STATUS of the returning message remains
set which indicates retransmission requirement of the origi-
nal message. This provision has been made to prohibit multi-
ple communication contracts for a single communication
contract requirement.

Transmission procedures When the time slot currently active
on the attached repeater station is empty, then the interface
initiates the transmission procedure which requires selecting
a ready source buffer to be transmitted, checking for an
empty location in TSAT. If all these checks are positive and
no transmission error has been detected between the previous
repeater station and the current repeater station, the
interface will transmit the message in the selected source

buffer and update the necessary table entries, such as SBST,

58

TSAT, etc.

Message_ Receiving procedure: There are 10 different message
receiving procedures, each of which is selected by the STATUS
and OP CODE combination of am incoming time slot. Rather
than giving an extensive treatment of these procedures by
showing the actions of the interface, the basic communication
philosophy is described. Details of these procedures are
shown in Appendix A in terms of flowcharts.

The interface needs to look at the STATUS and OP CODE
byte of each incoming time slot to select a necessary proce-
dure to process the slot. The destination byte which is the
third byte of a slot has a device address or a process iden-
tifier vwhich is an argument in checking the Allowed Destina-
tion Table of device address or the Process Name Table of
process identifiers. If a match is not found in this table
consideration of this slot is no% needed.
Otherwise, the availability of the required destination and
the buffer assigned to it for input needs to be checked. If
these checks fail, the processing of this slot is terminated
and NACK bit of the STATUS byte is set. This npdated STATUS
byte will be sent out to the net as soon as the repeater
indicates that no error has been detected on the time slot.
If any transmission error has been detected and indicated to
the interface by the repeater, the interface must not send

out the updated STATUS byte because the message in the time

59

slot processed by the interface might be an invalid message
containing a transmission error between the previous repeater
and the current repeater station.

However, if all checks are positive and the repeater
indicates that no transmission error has been detected on the
time slot, the message is copied into the proper destination
buffer and the information saved in the Table Updating Table
is used to update the necessary table entries, such as buffer
status, alloved source, etc., Then the original message, with
status indicating the success or failure of the transmission,
is passed along the loop to the original sender. The
interface in the originating station can get all the differ-
ent information about the returning message by looking at the
STATUS and OP CODE byte combinations. These combinations are
shown in Table 3 and the related informations are explained
in Tabie 4.

Local communication capability is provided on the
transnission of a message. In other words, a message
originated from a source buffer can be delivered to a device
or a process existing in the same station, when the message
is returning to the originating station. This local comrmuni-
cation capability reduces a considerable amount of the Micro-
processor®s job, because most of the interface functions must
be duplicated in software for handling the local communica-

tion problem by the Micro-processor otherwise. Since the

60

whole net is used for a local communication, this schenme
looks undesirable at first glance. However, once a communi-
cation contract has been =ade between the sender and the
receiver locally, further communications are to be done not
through the net but by the Micro-processor®s control locally.
In other words, after the communication contract has been
made between the sender and the receiver, both of which exist
in a same physical station, the Micro-processor in the same
station may be used for controlling data transfer between the

sender and the receiver without accessing the net.

The time slot is

ampty.

o | /////////// : /////////////
o | ///// //
- %///////////// %///////////4

62

Table 4. Information of STATUS and OP CODE combination

STATUS/0P CODE

Information

a2

A3

A4

B2

B4

Cc2

D2

=
(FY)

E4

The requested device address does not
exist on the net.

The requested address exists on
the net, but the source is not allowed
for that device address.,

The requested device address exists on the

net and the source is allowed for that

destination, but the assigned destination

buffer is busy.

The requested device address does not
exist on the net.

The system destination buffer which
is in the station where the requested
device address has been found is
busy.

Broadcasting type system message was
satisfied because every station
currently active on the net received
the message correctly,

Every station in which the requested
process was received the message
correctly.

The requested process does not exist
on the net.

net, but the source is no
for that process.

The regnested exists on the :
t allowed

The requested process exists on the
net and the source is allowed for
that process but the assigned buffer
is busy.

63

Table 4. {continued)

STATIUS,/0P CODE

Information

E6

F2

F4

G2

H2

HY

slash

ERROR

Retransmission of the message is
required because the previous

error of the message was occurred
before the station where the requested
process exists.

The requested process does not
exist on the net.

At least one system destination
buffer which is in the station where
the requested process exists is busy.

System message transmission can not be
satisfied for the given number of trials.

All stations are in power failure
except the sender.

At least one of the system destination
buffers is busy.

No valid informaticna.

Retransamission of the message is
required if the error has been logged
already.

64

DESIGN CONSIDERATIONS

As mentioned earlier, the interface processor is organ-
ized as a multi-processor system which has three small
processors working concurrently on different operations of
the interfacing requirements. Three different kinds of memo-
ries such as core, semiconductor RAM and PROM are provided in
the interface. The RAM is the actual communication region
among the three processors and the core is the program memory
of the Micro-processor. The rest of the interface systen,
the processors and the PROMs, are considered in this chapter.
Among the TTL logic families, the standard power components
are selected for designing the interface to satisfy the
comproaise between the speed and cost requirements. Some of
the schottky TTL family are used for timing coamtrol sections

due to speed and accuracy reasomns.
Programmable Bead Only Memories

Two different sizes of Programmable Read Only Memories
are provided as control mewories. Twenty differeat procedure
routines are stored in 512 bytes (12 bit per byte) PROM and
forty different basic subroutines are stored in the 256 bytes
(12 bit per byte) PROM. All interfacing problems are parti-
tioned and encoded to be stored in these two PRONs following

the instructions in Appendix B. These control codes are

65

shown in Appendix F.

Due tc the desire to keep the instruction word short and
to reduce the number of memory accesses for speed up the
operations, a decision was made to use 12 bit instructions.
All the instructions are 12 bits long and every instruction
is a one byte (12 bit per byte) instruction, even for jump
for instruction execution. Each PROM has its own address
register and data register. Corresponding outputs of the
data registers are OBR-tied to form a 12 bit instruction bus.
A PROM control logic is provided to control two PROMs, such
as indicating an active ROM, etc. A block diagram for these
ROMs and the control is shown in Figure 19.

There are two unconditional branch instructions which
are CALL and JUMP. The CALL instruction causes a branch out

to the subroutine in the 256 byte PROM starting at the speci-

(Rl

ied address in the CALL instruction. W®When the subroutine
retura is required after the called subroutine processing is
over, the PROM controller will activate the 512 byte PROM and
disable the 256 byte PRONM. The JUMP instruction causes a

branch out to the specified location inside the 512 byte

PROM. These actions are shown in Figure 20.

66

- n

Instruction Instruction
Register 2 Register 1
T ' ! T
256 bytes PROM 512 bytes
PROM control PROM
2ds, Reg. 2 Ads. Reg. 1

Figure 19. Twuwo separate PROMs.

\\/

67

Bl |
256
bytes 512 bytes JUMP
ROM PROM

| FETURN |

Figure 20. Directions of CALL, JUMP and RETURN.

Capabilities for multiple nesting subroutines are not
provided because basic subroutines are defineld such that such
nesting is unnecessary. In defining the subroutines as de-
scribed above, more memory space for storing basic routines
is needed than if subroutiﬁe nesting capability was provideil,
because some of the subroutines are encoded as another basic
routine. At first glamce, this apprcach is not economical,
However, considaring the sharp reduction in cocst of LSI
components due to the rapid advances in semiconductor
technology, this approach may be preferable to the conven-
tional single ma2mory control system. Its advantages are:

a) Fast _speed: Every procedure is composed of 20 to 40
instructions. For any procedure, the number of subroutine
call instructions is quite high and these CALL instructions

request processing from the basic subroutine ROM. Thus, when

68

a subroutine CALL is finished, the next instraction of the
procedure RCM is already avaiiable in the instruction regis-
ter of the procedure ROM. This elimihates the need to save
and restore processor status on a subroutine call because
each ROM has its own iastruction register.
b) Short_ address_ field: Since subroutine addresses are fixed
(recall that the basic subroutine ROM is 256 bytes), the sub-
routine addresses can be specifed in 8 bits even if the size
of the procedure ROM is expanded.
c) Elexibility: Host of changes, if required to modify the
interfacing problems are to be expected inside the procedure
routines instead of the basic subroutines.

Instructions stored in two ROMs can be subdivided de-
pending upon the type of operation:
a) Multiple Operation Instructions: This type of instruction

enables multiple cperaticns, or functions, to he specifie

(Y

by
a single procedure instruction. For example, ETM A (Enable
Table Matcher type A) is an instruction which enables the
Table Matcher to check the table requested, with the provided
data and to return the location of the match. fherefote,
reading data from the memory, checking for a match and
incrementing the memory address for the next location to be
checked is to be repeated until finding a match or the end of
table is reached. This function is dorne in hardware

initiated by a single procedure statement, thus saving time

69
by eliminating the overhead of executing the instructions
necessary to provide the same result.

Another instruction of this type is RCY n (Receive n
bytes of data from the repeater to memory) which will enable
the following sequence 0f operations which is repeated n
times: receiving one byte of data from the 16 byte temporary
buffer, store it in the memory, and increment the memory ad-
dress. The value of n can be 1 to 15. This way, table
checking operations and data receiving operations, which are
very time consuming operations, can be speeded up.

b) Double Operation_ Instructions: ADR (Add and Read) is pro-
vided because most of the additior operations accompany the
memory read operation. Therefore, upon finishing the add op-
eration, if the read bit is set, a read operation from memory
will be performgd. For most of the instructions, the last

pit is a RETUBN bit. That is, if the ilast bit is set, upon

I=|

finishing the instruction execution, the subroutine return
operation will be performed. This saves memory space and
reduces the number of memory accesses, both of which speed up
the processing of a slot.
c) Single Operation Instructions: Some of the instructions,
such as JUNP, MOVE, etc., require just a single cycle of op-
eration.

A checking operation and subsequent conditional jump op-

eration depending upon the result of the checking operation

70

are combined to be performed in one instruction instead of
tvo iastructions such as a conditional jump instruction fol-
lowed by a checking instruction. Considerable amount of
hardware to be involved in the condition flip-flops and logic
for saving the states of the previous operation result can be
saved in this way. There are tuorgroups of checking ianstruc-
tion depending upon the number of branch-out corresponding to
the checking result. BHNost ¢of these checking instructions,
such as ETM A, ETH B, CK1, CKAB, CKOP and CKXNITC, require 1a
tvo-wvay branch-out depending upon the match or non-match of
the checking result., However, one instruction, CK2, requires
a three-way branch-out depending upon the information
checked. Clearly, the instruction which requires a three-wvay
branch-out can be converted to a sequence of two
instructions, each of which requires a two-way branch-out de-
pending upon the resuit of each checkind. Giowever, the in-
struction which requires a three-way branch-out was
preferred, because this instruction was used much moxre than
the other type checking instructions. In this way, the num-
ber of memory accesses can be reduced which also speeds up
the processing of the interface operations as well as
conserving memory space.

For those two-way branch-out instructions, the next in-
struction to be executed 1s to be fetched from the memory ad-

dress obtained by incrementing the current address by one or

71

two depending upon the non-match or match of the‘checking ra-
spectively. For the three-way branch-out instruction, the
next instructiocn to be executed is to be fetched from the
memory address obtained by incrementing the current address
by one, tvwo or three depending upon the information checked.
Examples of these actions are shown in Figure 21. For both
cases, the current memory address is automatically
incremented to get the memory address of the next iastruction
to be executed depending upon the type of checking instruc-

tion and the residilt of the checking.

check 3
check 2 a
No JUMP/HALT
JUMP/HALT Yes c
JUMP/HALT
continue ‘// /
continue ‘g,///
two way branch out three way branch out

Pigure 21. Branch-out locations.

The complete descriptions of the instructions are pro-

vided in Appendix B as well as each instruction execution

72

time. Physically, these PROMs are implemented on a 14%"x11"
printed circuit board which has following hardware
components:

1) 512 byte procedure PROH

2) 256 byte subroutine PROM

3) PRONM controller

4) address register and instruction register of each

PROM

5) instruction decoder

6) clock generator and timing phase decoding logics for

instruction execution

7) parity checkers for the instruction decoder.

There are about 130 TTL Integrated Circuits (IC) provid-

ed on this board.

Table Matcher

The Table Hatcher is specially designed to fit the high
speed sequential table searching operation. Also, the Table
Matcher is responsible for handling overall interfacing
problems controlled by the encoded procedures and subroutinss
stored in the two separate PROMs. The Table Matcher contains
the following hardware components.

a) one 8 bit STATUS byte register and status updating
logic

b) STATUS and OP CODE byte decoding logic to determinsz

73

a procedure to use in processing a slot.

c) two 8 bit address registers

d) one 8 bit temporary register wvhich éontains the
table checking information such as number of table
entries and the amount of an entry increment.

e) tvwo 8 bit data registers

f) character counter and bit counter decoding logic to
synchronize interface operatioms to the repeater

staticns.

g) two 16 byte buffers for storing the message passing
through the repeater.

h) a 12 bit binary adder and the adder control

i) a S bit binary counter to count the number of checks
being done or number of data bytes received.

j) a 4 bit source buffer pointer which is a ring
counter speciiving which source buffer needs to be
checked for next transmission request

k) a 4 bit binary transmissiorn counter which counts the
number of transmissions on a same system message.

1) an automatic table checking controller

m) an automatic data receiving controller

n) checking logic to compare the contents of two data
registers

0) a timing controller for buffering a message from the

repeater and clock generator

74

The block diagram of the Table Matcher is shown in
Figure 22. ’'BRather than describing all the hardware actiomns
involved, some of the logic and operations involved in the
automatic table checking will be discussed.

For an automatic table checking operation, information
required for checking the table must be preloaded into the
proper registers. This information includes the beginning
address of the table, number of table entries, amount of
entry increment and the data to be compared.

The beginning address of the table is loaded into the
tvo address registers, RB and BA, and the number of table
entries and the amount of entry increment are loaded into the
8 bit data register, RC. Here the address register RB
contains the high order 4 bit address and the address regis-
ter RA comntains the low order 8 bit address. The high order

2 ks € &Lk < oh A r~ Amdens o~ AL - emem bnmen e £ Reed o -
3 bits of the register, RC, Contain the numDEer OL ©Lytes

i

oy

entry increment and the low order 5 bits contain the number
of entries to be checked in the table. The data to be com-
pared for a match is loaded in the data register, DB. One
check counter is provided which is a five bit binary counter
counting number of checks being done. This counter must be
cleared before an automatic checking operation is initiated.
After all this information is preloaded, when an auto-
matic table checking operation is initiated by decoding

ptoPer instruction, the Table Matcher will read one byte data

>

transmission J I data (from repeater)
error ~
{P_——:U:*'—“;l l C.C. and B.C.
> address
J adder X is?:ers
16 bytes 16 bytes eg
buffer |—w{ buffer decoder
no. 1 no. 2 ecin data
controg [registers
__Jun+w '
' receiving [e—}» '
buffer counters
control - control t—9
l] N\ T
STATUS
OP CODE £ aE ilure STSR
decoding ' f
{ parity
updating |=—e control
procedure | control
selections
and control
‘ ¢ decoded
instructions parity
to to error
PROM Output. Sequencer (from ROM)
Fiqure 22. Table Matcher block diagraa.

PO Bocuknh

he W

>

nunoL» Bocdukk®

e

SL

76

from the memory address specified by the contents of RB and
BRA and load it into data register DA. Then the contents of
DB and DA are compared. If they are not matched, the next
entry address of the table is calculated through the 12 bit
binary full adder. The amount of an entry increment which is
in the high order 3 bits of RC is added to the current ad-
dress, the contents of RB and RA, through the adder and the
sum is loaded back into the RB and RA. Whenever a new ad-
dress is calculated, the contents of the 5 bit check counter
is incremented by one indicating number of entry checks being
done. This process, read-check-increment, is continued
repeatedly until a match is found or until the contents of
the check counter is matched with the low order 5 bits of RC,
indicating that all the table entries are checked.

When a match is found during this process, the contents
of BB and KA is saved imn the Table Updating Tapvle with the
properly updated data. The hardware logic involved in this
process is shown in Figure 23. Physically, this Table
Matcher is implemented with three 14%x11" printed circuit

boards each of which contains about 100 IC packages.
Output Segquencer

The Output Sequencer contains the following hardware

components:

1) ocone 8 bit data register

A

System Address Bus

!

i

System Data Bus

& "

match
check

” 4

;

} 1o

DB

12 bit adder

checking
logic

!

nNemory
access
control

counter

autamatic
checking

control

Figure 23.

Logic for automatic table checking.

LL

78.

2) tvo 8 bit address registers

3) sequencing control including memory request control

4) special OP CODE generator

5) one 8 bit Output Sequencer control register

This Output Sequencer is enabled by the Table Matcher

when a message transmission is needed by storing a proper in-
formation in the Output Sequencer control register. This
register is loaded by the 0SC imstruction and depending upon
the loaded information in this register, the Output Sequencer
transmits proper message. The block diagram of the Output
Sequencer is shown ia Figure 24. This output Sequencer is
physically implemented on a 14"™ x 11" printed circuits board
on which following hardware componets are also provided.

1) memory request first come, first serve network

2) parity bit gemerator

3) parity checkertr

4) memory control clock generator and timing phase

decoding logic

The block diagram of the random access memory and memory

controller is shovwn in Figure 25.
Micro-processor

The Intel 8080 which is a 40 pin single chip LSIY general
purpose computer with 2 microseconds instruction cycle time

is used for the Micro-processor. The Micro-processor is used

N

System Data Bus

A\

System Address Bus >
-
' N\ _‘ l {l timir 19
parity memory -t g
checker OSAR B OSAR A request and c
control : .
A e R }instruction
T bus
IDB Bad
\
kR i r
' special
OSDR 0P COD
esif}: Lt 4 C.C. & BoCo
it sequencing |« decoding
————————— control #——————————— Joad enable
(from repeater)
\
parity
error \/
to repeater

Figure 24.

Output Sequencer block diagram.

6L

System Data Bus

]

A (

System Address Bus

A
atl}
-
Y
. . 512 bytes memory .
semi.conductor + read/write |[a—— Eﬁﬁﬁsk&ve
RAM control
. . mamory
parity bit ::i :fMQrY requests and releases
generator &;ﬁﬁgl by 0S, ™ and Micro

Figure 25.

timing phases
to 0OS, ™ and

Micro

BRAM and controller.

08

81

for controlling interrupts provided by the Table Matcher,
data transfers to and from the devices connected to the
interface and message editing and some other control
functions. The message editing includes breaking up of a
message into 10 bytes sections that can be put into a slot as
vell as the reassembly of these sections at the destination.

The Table Matcher can interrupt the associated Micro-
processor with a proper interrupt code which is to be stored
in the Interrupt Information Table of the 512 byte random
access memory. Two reserved locations in the Interrupt In-
formation Table are used for storing the interrupt codes.
There are three different interrupt instructions each of
which has its own usage and priority. The interrupt
controller connected to the Micro-processor is designed to
provide the multiple interrupt capability to the Micro-
precesser accerding to i . prioriti T
ferent interrupt instructions which are used by the Table
Matcher to interrupt the Micro-processor are shown in Table 5
as well as the interrupt codes, reserved locations for inter-
rupt codes, priorities and the related usage.

¥hen the Micro-processor is interrupted by instruction,
IST.A, the Nicro-processor ¥ill start either the start-up
procedure or the shut-down procedure depending upon the codz
stored in the code location 001010110. The instruction,

INT.B, is for interrupting the Micro-processor for control-

82

Table S. Interrupt instructions

Iastruction Priority Location Code Usage
INT A 3 001010110 00000110 shut-down
INT 2 3 001010110 00000111 start-up
INT B 2 001001110 xxxxSBNO source buffer
INT B 2 001001110 DBNOxxxx dest. buffer
INT C 1 001010110 00000001 THMMC ok
IRT C 1 CcC101011C 00COQC01Y THMC fail

ling normal message handling problems, primarily for coantrol-

ling buffers. Upon receiving this interrupt, the Micro-

processor needs to make various decisions depending upon th2

information stored in the buffer indicated by the interrupt

code in the memory iocatiom GOT0TA

The interrupt code which is used for this

given b

~

ber {s} on which the Micro-processor must sarv2
The high order four bits in

destination buffers and the

of the source buffers,

between 0000 to 1110.

each

This

n
Ve

the instruction, INT.B, indicates the

the code indicates

interrupt
buffer num-
the intarrupt.

one of the

low order four bits indicate on2
of which can be a binary value

indicates that up to 15 source

buffers and 15 destination buffers can be allowed imn an

interface and the binary 1111 in either location indicates an

83

invalid buffer nuaber.

For exanmple, when the Micro-processor is interrupted by
the Table Matcher with interrupt instruction, INT.B, and in-
terrupt code 11110010 in memory address 001001110, the Micro-
processor must examine the contents of the third source buf-
fer to determine proper operation to serve this interrupt.
Since the high order four bits in the interrupt code, 1111,
indicates an invalid destinaticn buffer, the Micro-processor
need not to consider about the destination buffers at all.

The instruction, INT.C, will be used to inform the
results of a table checking when the Table Matcher has been
used on Micro-processor's table checking operationms.

This requires that the Micro-processor must serve an in-
terrupt within a time slot delay to be ready for the inter-
rupt which may be given to it while the interface is process-
ing the next time siot. Considering the speed of the Hicro-
processor and the speed requirement of the interfacing prob-
lem, the Micro-processor will save the given interrupt code
in the core memory instead of completing the whole operations
required by the interrupt. Since the buffer status are prop-
erly updated to block the buffers from additional messages by
the Table Matcher before the interrupt, the operations which
must be done to serve the interrupt can be done any time when

the Micro-processor is available.

84

A sample programr which saves the interrupt code has been
written to see the amount of time required for this routine
follovwing the Micro-processor's instruction set as shown in
Table 6. This routine is supposedly stored in the
seaiconductor memory instead of in core memory to reduce the
time required for instruction fetches. Total amount of time
required for handling this routine was obtained as follows:
There are total 137 states each of which is 500 ns, which
amounts to 69.5 microseconds. There are 9 writing operations
into the core memory each of which is 1.5 microseconds which
totally amounts to 13.5 microseconds. Also, there are 9 read
operations from the core memory each of which is 0.5
microseconds, which totally amounts to 4.5 microseconds.
Summing up these values, total 86.5 microseconds is obtained
including memory cycle times which is faster than a time slot

the

1

delay 170 microseconds. iHowever; practically able
Matcher can give the next interrupt at STEP 11 of the Table
6. Therefore, the minimum interval ¢. 68.5 microseconds be-

tveen two consecutive interrupts can be obtained.

Table 6.

85

An interrupt code saving routine

STEP Instruction

byte state fetch memory RAN CORE
1 BST 1 1n RAM - 2W
2 PUSHA 1 11 RANM - 2R
3 PUSHH 1 1 RAM - 2W
4 LHLD INTCODE 3 17 RAM - 2R
5 LANM 1 7 RAM i -
6 LHLD INTLIST 3 17 RAM - 2R
7 LMA 1 7 RAM - 1%
8 INXH 1 5 RANM - -
9 SHLD IRTLIST 3 17 RAM - 2"
10 ETI 1 4 RAM - -
*11 bopH 1 10 RAM - 2R
12 PCPA 1 10 RAM - 2R
13 RET 1 10 RAN - 2R

86

As mentioned earlier, the HNicro-processor is also used
for controlling data transfers to and from the devices which
are connected to the interface. Four different kinds of pe-
ripheral devices can be directly attached to the interface,
through the Micro-processor, without the aid of any other
processors. These are card readers, teletypes, line printers
and CRT displays. The Micro-processor serves these peripher-
al devices on a character by character interrupt basis.
Considering the speed requirements and operational
characteristics of these peripheral devices, overall

pricrities are assigned to the interrupts given by these

devices as shown in Table 7.

Table 7. Interrupt priorities

Priority Type of INTERRUPT
6 shut-down, start-uap procedure
5 Table Matcher normal INT
4 card reader
3 CRT display
2

teletype (TTY)

1 line printer

87

A sample program which moves a character between the
core memory and a peripheral device, similar to the interrupt
code saving routine, has been ¥rittem as shown in Table 8.

This routine takes 91 microseconds for execution.

Table 8. A character transfer routine

STEP Instruction byte state £fetch merory CORE
1 RST 1 11 - - 2¥
2 EX 1 4 1 RANM -
3 PUSHA 1 1 1 RANM 2%
4 PUSHH 1 LR 1 RAN VA |
5 JMP CON 3 10 3 RAM -
6 CON LHLD BFAD 3 17 3 CORE 3R
7 IN DEVICE 2 10 2 CORE -
8 Lna 1 7 1 CORE 1w
S INXR 1 5 1 CORE -

iC SHLD BFAD 3 7 3 CORE 2%

11 POPH 1 10 1 CORE 2R

12 POPA i 10 1 CORE 2R

13 RET 1 10 1 CORE 2R

88

Assuming typical speeds of the peripheral devices, the
percentage usage of the ﬁicro-proceésor for controlling data
transfer problems can be obtained as follows: Assuming that
there are 16 staticns and 32 time slots on a loop and aliso
assume that every time slot has egqual prcbability to be used
by a station, then on the average four interrupts (two for
source buffers and the other two for destination buffers)
will be sent to the Micro-processor by the Table Matcher for
a loop delay which is 3.3 ms. If eight different peripheral
devices such as one card reader, one CRT display, one iine
printer and four teletypes are provided and all of these
devices are busy for handling data transfers, then the per-
centage usage of the Micro-processor for transferring data to

and from these devices is obtained as follows:

Table Matcher 87 ps x 4/3.2 ms =0.109
card Reader ST us/2.5 @s =0.03%
Teletype (200 ps/100 ms) x 5 =0.01
Line Printer 150 ps/2 ms =0.275
CRT display 150 ps/1.67 ms =0.09
Total=0.32

Therefore, the Micro-processor can still spend 68% of
‘the time for its own jobs which are not time critical such as
updating buffer status, transferring messages between the

random access semiconductor memory and the core memdry,

89

updating tables and editing messages, etc.

Consequently, the Micro-processor is expected to be ca-
pable of handling any combination of these peripheral devices
without the aids of any other processors. Clearly, for a
station where a minicomputer is connected to the interface,
these Micro-processor®s control functions will be even more
simplified.

The block diagram of the Micro-processor and the control
logics associated with it are shown in Figure 26.

Physically, 80 TTL IC's are used for implementing this Micro-
processor on a 14" x 11" printed circuits board.

Three different buses are provided to connect the Output
Sequencer, Table Matcher, Micro-processor and the different
memories. The System Data Bus is a 9 bit data bus including
one parity bit which the Output Sequencer, Table Natcher, and
Hicro-processor camn use, one at a time to access the 512
bytes semiconductor memory. The System Address_Bus is a 12
bit address bus to send memory addresses to the memory by the
processor which gets the memory service granted. The high
order two bits of this address bus will be used as a memory
cycle control code to specify the memory read or write
request. The Internal_Data_Bus is an 8 bit data bus to
connect all the registers inside Table Matcher and Output
Sequencer. Through this route, all data transfer operations

will be perforred inside the Table Matcher and between the

>

nuoRuP Socda<®n

new

<

<

Micro Address Bus

i

V

Figure 26. MHicro-processor and controller.

e
/\ N ‘ 1 Micro Data Bus
< 'croxymtmy
selection and ~
ntrol
S
Y Micro-
i processor '« | interrupt |e——— requests
e (Intel 8080) —| control
m
2 w ‘ clock
£ generator
a parity .
checker status A
B oontrol 4
u
s
parity &
\/ error time out
failure

06

91

Table Matcher and Output Seguencer.

The Micro-processor has its own 16 bit address bus and 8
bit data bus to connect the Micro-processor t2> the cors memd-
ry and also to the 512 byte semiconductor memory when the
Micro-processor wahts to access the commonly owned memory.

In other words, the system address bus of the interface is
connected to the address bus of the Micro-processor and the
System Data Bus of the interface is connected to the data buas

of the Micro-processor, to> allow the Micro-processor access

the

semi-conductor memory. The bus connections among these

processors and the memories are shown in Figure 27.
System Maintenance

There are some features involved in the interface which
¥ill be used for system da2bug and maintenance. During the
normal operations of the interface, five major probable
system malfunctions can be detected and displayed on ‘the

front pannel of the station. These are:

a) Parity check of_the_semiconductor_memory: Whenever a

data is stored in the semiconductor memory, an even parity
bit is generated through 32 8 bit parity generator and storei
in the memory with the data. Therefore whenever a data is
read, the retrieved 9 bit data would be checkz3 on a 9 bit

parity checker.

Table
Matcher

IDB

> Output

- " Sequencer

System Data Bus

T

J,

!

>
>

/\

System Address Bus

;

l

512 bytes

RAM

semiconductor

Micro- M M
processor - ! i
c c
Micro memory g g
’ selection and

[d control D A
{ a d
t d
> L. a r
) e
‘ B s
> u [}

s
B
u
s

1K to 4K bytes

core memory

/\

Figure 27. Overall systea connections.

6

93

B) Parity check of core_memory: The same thin§ is done for

the core memory as for the sericonductor memory.

C) Parity check_on_the_system_data_bus: The system data bas

is the main data path through which communication between a
processor and the semiconductor memory can be made. The
Table Matcher, Output Sequencer and the Micro-processor are
physically separated and implemented on different printed
circuit boards and each processor has its own 9 bit even

parity checker which will be used for checking the 9 bit

D) Mutually exclusive operation_such_as_instruction

decoding: Only one instruction must be decod=23 from the 12
bit instruction buas. This can be checked, partially, by
applying parity checkers.

E) <ZIime_out_ failure: When the Table Matcher interrupts the
Micro-processor, the Micro-processor must acknowledge the in-
terrupt within a certain amount of time by seading out the
interrupt acknowledge signal, because the Table Matcher's in-
terrupt has the highest priority.

A maintenance unit which is composed of a display board,

structed. The display board has 300 Light Emitting Diodes
(LED) on it to display ths contents of registsrs, buses and
some other major control signals to test the interface on a

static basis, The simulated repeater is a logically

94

simplified repeater which can be operated on a manual mode
for testing the interface. The connector boards are used for
connecting the various signals to the display board.

The interface has tvo different operation modes. One is
the normal mode and the other is the test mode. These are
controlled by a switch on the front panel of the station.
When the interface is in the normal mode, it operates in
conjunction with the attached line repeater. Otherwise, th2
interface is logically disconnected from the line raepeater
an@ is operated in conjunction with the simulated repeater.
Therefore, the interface can be tested without disturbing the
normal operations of the whole net, Also, an extension board
has been constructed to extend the bus connector signals out

of the interface system box, which will permit testing and

probing a specific board.

95

CONCLUSIORS

The critical param2ters for interfacing a loop coanected
syster have been discussed and the near optimur organization
for the interface processor unit has been determined. The
feasibility uT such a system has been demonstrated on a gen-
eral and detailed basis.,

The critical parameters in the system wers found to be
the processing rates for the various table matches; this
probiem was solved by the Table Hatcher which is a specially
developed processor for high speed sequential table searching
operations. Because of different speed requirements relative
to interfacing, the system was organized into three main
sections vhich are called the Tabl2 Matcher, the Output
Sequencer and the Micro-processor respectively, forming a
high speed. low co>st and flexible multi-processor system.

Partitioning the control memory into two separate parts
depending upon the pre~defined procedures and subroutines of
the interfacing problems appears to be a very efficient
technique not only for the discussed system baut also for any
other systems for hardiing the probiems to be partitioned
into procedures and subroutines. Clearly, the number of
partitions may be expanded depending upon the practical envi-

ronment of a system requirements.

96

Special emphasis has been made on automatic checking
operaticns, partitioning control memory into two separate
parts and the application of a Micro-processor as well as
table manipulations and system maintenance. To provide flex-
ibility in allocating resources and in sharing the network
facilities, the interface was designed as general as possi-
ble., Control information related with sharing resources and
network itself can be easily modified dynamically depending
upon the dynmamic increase or decrease of the comnunication
demand of a station. The restricted demand multiplexing
technique adopted in this system allows the network itself to
be dynamically distributed over its resources. The local
comnmunication capability allows the complete distribution of
resources and facilities over the network can be physically
irplemented. The features involved in the interface insure
a
low cost, high speed and flexible communication processor for
handling the fairly sophisticated interfacing problems on a
loop computer network.

In the future, if a Micro-processor with an order of
magnitude increase in speed over the currently available
micro-processors becomes commercially available, then the
interface may be implemented with a set of the interconnrected
Micro~processors instead of using the specially designed

processors. The number of required micro-processors in the

97

set is greatly dependent on the boundary between generality
and specificity of the instruction set of the future micro-
processor. Economic feasibility can be deterained

considering the required number of Micro-processors and the

improved reliability of the emulated systen.

1.

3.

4.

S.

8.

9.

10.

o]

BIBLIOGRAPHY

Pierce, J. BR. "Network for Block Switching of Data.™

1972) = 1133-1145.

Kropfl, W. J. "An Experimental Data Block Switching
System.™ Bell System Technical Journal 51, No. 6 (July-

August, 1972): 1147-1165.

Coker, C. H. "An Experimental Interconnection of
Computers Through a Loop Transmission System.®™ Bell

1167-1175.

Farber, D. J.; Feldman. J.: Heinrich. F. R.:; Hopwood.
M. D.; Larson, K. C.; Loomis, D. C.; and Rowe, L. A.
“"The Distributed Computing System.™ 7th Annual_ IEEE
Computer Society International Conference, Feb. 27,28,
March 1, 1973.

Farber, D. J. and Larson, K. C. "The Structure of a
Distributed Computing System-Software." Symposium_on

Polytechnic Institute of Brooklyn, April 4-6, 1972.

Lawrence, A. R.; Hopwood, M. D.; and Parber, D. J.
"software Hethod for Achieving Pail-Soft Behavior in the
Distributed Computing System.® 1973 IEEE_Svmposium_on

Computer Software Reliability, April 30, May 1-2, 1973.
Farber, D. J. and Larson, K. C. "The Systenm
Architecture of the Distributed Computer System - The
Communication System.™ The Polytechnic_Institute_of
Brooklyn Symposium_on Computer Networks, April, 1972.

i
Hassing, T. E.; Hampton, R. M.; Bailey, G. W.; and
Gardella, R. S. "A Loop Network for General Purpose
Data Communications in a Heterogeneous World."™ 3cd_Data

Communications_Symposium, November 13-15, 11973.:
Hayes, J. F. "Hodeling An Experimental Computer Commu-
nication Network." 3rd _Data Communications_Symposiunm,
November 13-15, 1973.

Koenck, S. E. "The Design and Evaluation of A High
Speed Recirculating Data Network.” Unpublished Master's
Thesis, Iowa State University, May, 1974.

99

ACKNOWLEDGENENT

The author wishes to thank to Dr. A. V. Pohm for his
valuable suggestions and immense encouragement during the
pursuit of this research. The author also expresses his
appreciation to Dr. T. A. Smay and Dr. C. G. Mapie for their
patience and continuous guidance. Special thanks are due
Chris Reschly for many rewarding discussions. Last of all,
the author would like to thank the many people including his
parents and wife who have assisted him in the furthering of
his education.

This vork was supported jointly by the I.S.U. Computa-

tion Center and the I.S.U. College of Engineering.

100
APPENDIX A. FLOWCHARTS OF INTERFACE OPERATIONS

Fifteen different flowcharts provided herein define
interface functions depending upon the processing
requirements. In the floucharts,(:::)indicates the exit for:

checking other processing requirements.

101

interface
initiated

clear
counters
registers
meories

Figure A1. Start-up procedure.

102

!
power ﬂﬁlun#
detected

Y

proper
C.C. ard B.C.

decoding

¥

INT A

update

free the
time slot

Figure AZ2.

t Yes

Shut-down procedure.

103

match

Y

store the

gihnss INT code

INT C

Figure A3. Allow Table Matcher to Micro-processor.

104

determine
the special
message to be

[3 3=
cransmic

Yes

assigned message

- -

read the OP
‘II’<F___.Cﬂm30ftme
assigned

Figure A4, Transmission errc¢r procedure.

105

STATUS enable Output
100010 Sequencer to
transmit the
l sage
enable Output
Sequencer to
transmit the
message

Figure A4. (continued)

check TSAT
for an avail-
able location

Fiqgure AS.

106

buffer found

— :

check TSAT
for an avail-
able locatiorn

check if the

p e e
AL LD

system buffen

Data transmission procedure,

107

knable Output
Sequencer to
transmit the
message

Figure AS.

P @ il

(continued)

108

Table A1. Data transmission procedure
STEP Operations
a Check the STATUS byte to determine 1if
the incoming time slot is empty or not.
b Determine the necessary procedur2 accordiag
to the STATUS and OP CODE bytes if
the STATUS byte is not empty.
c Check the Source Buffer Status Table for a
ready source buffer to be transmitted.
a Store the buffer status updating information
in Table Updating Table.
e Check if the selected buffer is a system buffer.
f Check the Time Slot Acknowledge Table
for an empty time slot entry.
g Store the Time Slot Acknowledge Table
updating information in Table Updating
Table and wait for transmission
error checking.
h

PV L

buffer to be transmitted and transfer
this buffer address to the address
registers of the Output Segquencer and
enable the Output Sequencer transmit the
data in the buffer. The Output Sequencer
will transmit the message in the buffer
one byte at a time every 6.5 micro-seconds
according to the proper decoding of the
character counter and the bit counter.

109

Table A1l. (cont inued)
STEP Operations

i Update the source buffer status fron
*ready' to 'transmitted® in the Source
Buffer Status Table.

J - Increment the Source Buffer Pointer by
one to indicate the next source
buffer to be checked.

K Store the time slot number used by
that station and the source buffer
transmitted on that time slot into the
Time Slot Acknowledge Table.

1 Clear the contents of the transmission counter.

m The transmission procedure ended.

The interface is ready to serve
the next time slot.

110

STATUS
000010
?
Yes

No No
) ¥
rawa
. nﬁbnmn:on save updating
gﬁgt&ﬁqtug in TUT information
information in TOT
in TUT
MRACK: 1 iizirmation
ACK: 1 in TbT

Figure AS6. Broadcasting message.

Y

111

v [

comp. source
in the buffer
with incaming
source byte
NACK: 1
ACK: 1
[]
NACK: 1
Yes ACK: 1 r
[No
send out the 7 ACK: 1
updated
STATUS
—— 7 ves
¥ error
{“‘“‘———— receive the ?
massage
send out the

;Euﬁgd send out the
No Yes updated
error b STATUS
update
00 -> 01

i (=

Figure A6. (continued)

112

error Yes

No

STATUS
000000

#

receive the

returning
message
STATUS STATUS
000010 000010 INT code
1 crnorde i INr B
dhad AN de e A Pl B e @ wE
XMITC o1l ‘
| % update
. TSAT
TSAT

Figure A6. (continued)

113

receive the
message

Yes

‘No

STATUS
000010

'

QP CODE
010

'

1A ada
Lpaatis
DBST
00 = 01

update

Figure &6. {(continued)

AN
N

S ey TR TR e e

114

information

in TUT

in TUT
C B
v g

;
©,

Fiqure A7. System message to a process.

115

check
PNT ._______1
NACK: 1
ACK: 1
Ne
—
‘ | Yes
receive the
message
No
send out the
updated
STATUS
Yes
No
serd out the [
-updated ‘}
STATUS
comp. source in
; dest. buffer
with incoming
update ACK: 1 source byte
DBST .
00 —> 01 v
save updating
‘ information mﬁ?h
in TOT)
L\\\\\\\ Yes

Figure A7. (conrtinued)

116

check
XMTITC

overflow No
?
Yes
Yes Yes ~
No No
STATUS

STATUS
000010 000010
OoP CCDE increment
011 XMITC

Figure A7. (continued)

117

ENT
NACK: 1 -
ACK: 1
© O |
| Yes
check system
Yes destination Ye
No NO
STATUS STATU!
000010 000013
Y {
OP CODE
110 OP CCODE
ACK: 1 110
* ;-,
update ¥
. te
DBST save updating ?%;}
00 ->» 01 information

Figure A7. (conrtinued)

118

No

Yes

STATUS
000000

check system
destination
buffer status

l

receive the
returning
message

" INT code

INT B

update
TSAT

Pigure aA7.

o
(=)

NACK: 1

(continued)

119

updating |

information
in TUT

comp. source
in the buffer]
with incoming

STATUS
000000

01 —>11

Figure AS8.

INT code

Special message Si.

120

save updating
information
in TOT

{

camp. source
in the buffey
with incoming
source byte

INT code

INT B

Figure 8. (continued)

121

STATUS +
000010 check
? DBST
' |
STATUS
& not 000000
ready
, Y
2 Yes receive the
returning
save updating message
information
in TUT &
* INT code
camp. source
in the buffer] {
with incoming
source byte update
DBST
01 -» 11
LNo ‘
INT code
INT B
¥
update
TSAT

Figqure A9. Special message S2.

match No

122

+ Yes

save updating
information
in TUT

———

camp. source
in the buffer
with incoming

source byte

Figure A9.

update
DBST

01 - 11

INT code

INT B

Yes

{(continued)

' ud

No

STATUS
000000

!

receive the
returning
message

INT code

INT B

update

123

Figure A10.

save updating]
information
in TOT

campare the

source in buf-
~fer with the
coming source

[Yes

jNO

STATUS
000000

¥

receive the
returning
message

N

l

01 -» 00

update
TSAT

Special message S3.

information
in TUT

ve updating

!

comp. source
in the buffer
lwith incoming

source byte

01 -» 00

124

Yes

y No

STATUS
000000

!

receive the
returning
message

!

INT code

Figure A10.

{continued)

125

STATUS

{——————- Yes

save updating save updating|
INT code n%bgfﬁ?on uﬁbqu?on

in Toy in ‘vl

INT B
update
TSAT

send out a new

STATUS 000000

—land receive
returning msg

Figure A11. System message to a device address.

126

NACK: 1
check ACK: 1
ADT
No Yes

Fos yNO

send out

check updated
assigned STATUS

uffer status

Yes

ACK: 1 send out the
_ updated
i STATUS
save updating é
information
in o £
& 00 -—>» 01
receive the ¥
message
INT code

Figure A11. (continued)

127

check
assigned
buffer status

-

STATUS
000000
es . receive the
save updating .
information rehi:%ng
in TUT nmessage
STATUS {
000000 receive the INT code
message
“ 1
receive the * update
returning DBST
message arror 00 -> 01
‘ ?
INT code Yes
INT code
' "
IN? B INT B
e e G S e

Fiqure A11.

(continued)

128

STATUS
000010

?

STATUS
000110

match

Yes

save updating

information

Yes

Y

read allowed
destination

!

save updating
information
in TUT

®

Figure A12. Regular message to a process.

129

information

in TUT

check allowed
source

NACK

1

Zexro

Yes

save updating
information
in TUT

—

check
tne assigned
buffer status

Fiqure A12.

{continued)

NACK: O
ACK: 1

Y

130

Yes

save updating o
information
" STATUS
in TUT 000000
receive the .
receive the
message returning
message
error Yes .
- INT code
S &
updated
STATUS INT B
send out the : update
allowed desti- I TSAT
nation in
6th byte INT B
update
update
DBS'I‘ h1 'Irc_.'nﬂ acnIrroe
00 -> 01 e T
e | (oo

Figure A12.

(continued)

NACK: 1

131

save updating

informaticn

in TUT

'

check assigned

buffer status

l

NACK: 1
ACK: 1

NACK: O
ACK: 1

K|

save updating
information

S AT
11 1LVl

’

receive
the message

Fiqure aA12.

(continued)

STATUS

000000

!

receive the
returning msg.
with the
allowed dest.

|

INT code

Y

update DBST
00 -> 01

INT code

INT B

update

132

{

STATUS
000000

Y

receive the
retumning
message

No INT code

wYes
save updating
information &

INT B

update TSAT

Figqure A13. Returning reqgular message directed to
a process afrter acknowledged.

133

STATUS
100010
?

1

read allowed

. »
desJ--n —i-\J-- T

(}E) check TSAT ‘
save updating
O information
in TUT
| Y

&Yes check
save Jating | allowed
information T
in TUT
% No
Yes
check PNT
Yes
No
ACK: 1
STATUS
! 000010 No SPECIAL: 0

(®)

Figure A14. Retransmission of a reqular message directed
tc a processe.

134

check PNT

STATUS
000000
receive returning
rgad allowed message with updated
estination STATUS and the
! allowed destination
Yes byte
save updating ¥
information
in TUT INT code
V ¥
check allowed
source INT B
update TSAT
| No
L =
¥
*Yes send out the
ACK: 1 rupdated STATUS
SPECIAL: 0
' Y
send out the
No | pllowed dest.
in 6th byte
Yes é

Figure A14. (continued) m

135

v

check allowed
STATUS source with
AR 000010 incaning
s source byte

assigned buffer
status

No erpty

?

NACK: 1 yYes
ACK: 1

ACK: 1
¥
save updating
information
in TUT
receive

message

in TOT

-~

Figure A15. Regular message to a device address.

136

save info.

update DBST
00 - 01

INT code

INT B

Yes

in TUT and
receive msg.

Figure A 15.

(continued)

137

STATUS STATUS
000000 000000
receive the receive the
returning returning
message message
INT code INT code

I
! v
INT B update DBST
Y 00 -» 01
update ‘
TSAT
INT code
Y
INT B
/ ;
update TSAT

“ I

Figure A15. (coutinued)

138

STATUS
000110

?

STATUS
010110

<:f:> . recei;£ the

returning

message

generate
INT code
save updating ¥

information

Yes

INT B

in TOT
update
. Ye TSAT
110 l
STATUS

000000

Figure A16. Returning reqular message directed to
a device address after acknowledged.

139

APPENDIX B. INSTRUCTION SET DESCRIPTIONS

The instructions described herein, each of which is 12
bit long, are those instructions which have been implemented
in the actual interface processor. When appropriate,
mnemonics are given for various instructions in addition to
the binary code and the instruction execution times.
Abbreviations which are used for various registers and

counters are shown in Table B1l.

11__10__9 8 7 6 5 g 3 2 1 0

|
] 110§ JUOMP ADDRESS |
]

The next instruction to be executed is in the memory lo-
cation specified by +he 10 JUMD ADDRESS bits. This reguires
that the contents of ROM AR1 is immediately replaced by the

JUMP ADDRESS.

1110 9 8 7 6 5 4 3 2 1 0

i
1 11 1 JUMP ADDRESS |
1

140

Table B1. Abbreviations for Registers and Counters

Abbreviation Register/Counter
DA Data Register A
DB _ Data Register B
DC) Data Register C
R Address Register 2
RB Addfess Register B
RC Address Register C
OSARA Output Sequencer Address Register
OSARB Output Sequencer Address Register
SBP Source Buffer Pointer
XMITC Transmit Counter
STSR STATUS Register
ROM AR1 Read Only Memory Address Register
ROM AR2 Read Only Memory Addrass Register
OSCR Output Sequencer Control Register

g Cnnrran
- LS 3-9-20 A <-4

&£ T
t T

141

Hold the normal operations of the interface until
transmission error on the current time slot is checked by the
associated repeater station. When this instruction is
decoded, the Character Counter and the Bit Counter of the as-
sociated repeater station are to be checked to determine
vhether the Table Matcher can be used by the associated
Micro-processor for a fast table cuaecking operaticns or not.
If no transmission errors are detected, the operations are

same as those of JUMP.

CALL

CALL 200 ns

 ——

|
|1 O

11__10 _9 8 7 6 3 4 3 2 1 0
|
| 0

i 1

1 SUBROUTINE ADDRESS | °H |

1

e v ewen
paoss s oume

Replace the contents of the ROM AR2 with the 8 SUBROU-
TINE ADDRESS bits. If the last bit {(HALT bit} is set and ex-
ecution of the subroutine initiated at the SUBROUTINE ADDRESS

is done, hold the normal operations of the interface.

QUTPUT_SEQUENCER CONTROL

0SsC 150 ns

ii__10 9 8 7 6 S 4 3 2 1 0

i | | | i i | |
101 11 1] B8§ B7} B6| B5| B4| B3| B2| B1} BO|

i i___1 i1 ___1 1 1 i___1 i i [

This instruction controls the Output Sequencer by giving

the necessary information of expected operations to be dore

142

by the associated Output Sequencer. Only one bit out of B8,
B7, B6 and B5 can be set at one time and only one bit out of
B2, B1 and B0 can be set at one time. When this instruction
is decodad, the Output Sequencer saves this control informa-
tion in OSCR (Output Sequencer Control Register) until
transmission error is checked on the time slot. The proper
messages following this saved information are to be
transmitted to the net by decoding the appropriate Character
Counter and Bit Counter of the associated repeater, if no
transmission error is detected. Otherwise, information saved
in OSCR is invalid and therefore ignored. Each bit, BO
through B8, indicates a specific operation as shown in Table

B2.

143

Table B2. Mnemonics and Operations

Bit Mnemonics Operations

B8 STF Send out xx000010 for STATUS byte.
B7 STZ2 Send out xx000000 for STATUS byte.
BS STU Send out the contents of the STSR
for STATUS byte.
BS STS Send ocut xx100010 for STATUS byte.
B4 TAD Send out the allowed destination for the
requested process name for 6th byte.
B3 EOST Enable Output Sequencer ¢o transnmit
15 bytes data in the selected source
buffer whose beginning address is
in OSARB and OSARA.
B2 St Send out xxxxx010 for OP CODE byte.
B1 S2 Send out xxxxx011 for OP CODE byte.
BO S3

Send out xxxxx110 for OP CODE byte.

MOVE, SOURCE, DESTINATION

MOVE, SD 200 ns

PRy «©n
t§

i0_ S
{ | | |
101 01 1§
! 1 1 1

i___o___>5 g 3___2___1 0
| l

I
i SOURCE i DEST i
1 1

Q3

1

Transfer the contents of the source register/counter
into the destination register/counter. SOURCE and DEST are

specified as hexadecimal codes for mnemonics. Specifications

144

of registers and counters for SOURCE and DEST are shown in

Table B3.

Table B3. Register Specificatiomns

Binary Code Destination/Source
0000 DA
0001 . DB
0g10 bC
0011 RA
0100 , RB
0101 OSARB
0110 OSARA
o1 TS
1000 SBP
1001 STSR

ADD_AND READ

ADD/ADR 250 ns - 450 ns

-

I T e e
0} 01 1| } A1} A2] A3} A4| _ | _ | RD] RT{
L1 1 1

11 1 1 1 o1 {

11__10__9 8 1 6 S 4 3 2 1 0
0

Add the required number (or contents of register) to the
contents of RB and RA on the 12 bit binary full addar and

store the sum back into the RB and RA. When RD (read) bit is

145

set, read one byte data from RAM location addressed by RB and

RA and load the data into DA. The last bit is RETURN bit.

The operations and mnemonics are sho¥n in Table B4.

Table B4. Mnemonics and Operations

Bit Mnemonics

Operations

A1 ADD.A1
or
ADR. A1

A2 ADD.A2
or
ADR.AZ2

a3 ADD.A3
or
ADR.A3

a4 ADD.AY
or
ADR.A4

Add one to the contents of RB and RA
and store the sum back into the
RB and RA.

Add three to the contents of RB and
RA and store the sum back
into the RB and RA.

Add the contents of DA to the
contents of RB and RA and store
the sum back into the RB and RA.

Add the high order three bits of RC
to the conteats of RB and RA and
store the sum back into RB and RA.

LOAD, SPECIAL STORAGE, DESTINATION REGISTER

L0CAD, SS, DR 200 ns
11 109 7 6 5 4 3 2__ 1 0

] 1 ! ! i ! ! ! !

1 01 04§ 01} {1] SS i DR | RT}

| 1 1 1 i___1_ 1 —t_

Read one byte data from BAM location addressed by the

four SS bits and the two DR bits and load the data into the

destination register specified by the two DR bits.

Specifications for destination registers are shown in Table

146

B5. If the upper most bit of the four SS bits is '1', then
the high order four bits of actual RAM address are '1101°'.
Otherwise, the high order four bits of actual address are
'0010*. Therefore nine bit actual memory address for the 512
bytes RAM can be specified in the 6 bit code space (4 SS bits
plus 2 DR bits) in which the two DR bits can be also> used to
specified a destination register. For example, instruction
000011000110 says *'read one byte data from the memory loca-

tion 110100011 and load the data into RC'.

Table BS5. Specifications for DR/SR

DR/SR Destination/Source register
00 RB
01 RA
10 DA
1 RC

L T L= — b PP LT P T et

STORE, SS, SR 200 ns
11_10__9 8 7__ 6 5 4 3 2 1 _0_
| | i | | i | |
1010101110 SS { SR | RT|
it 1 4 1 __1i [|

Write the contents of the source register specified by

the two SR bits into the RAM location addressed by SS and SR.

147

Specifications for source registers are same as LOAD and are
also shown in Table B5. The upper most bit of the four SS
bits is used in the same way as LOAD. For example, instruc-
tion code 000100111010 says 'write the contents of RA into
the memory location 00101110 1°.

The reserved locations which can be accessed by these

instructions, LOAD and STORE, are shown in Appendix D.

RCV n 350ns x n (n<18)
11__10__9 8 7 6 5 4 3 2__.1 0_
i] |] | i | | | i
1010101 7] 1101} 0} n | RT|
i i 1 i L 1 1 L 1___1

Receive n bytes of data from the number two 16 bytes
buffer and store these n bytes data into the n consecutive
memory locations of the selected destination buffer. The
initial address 1is currently stored in ®P and@ RA. This in-
struction initiate a segquence cof operaticns as follows: Read

one byte data £

"

om the no. 2 16 bytes buffer, lcad the data
into DA, write the contents of DA into the memory location
addressed by RB and RA and increment the contents of RB and
RA by one and repeat these operations until the required n

bytes of data are all stored in the proper memory locations.

148

BDB, Nth BYTE

BEB ¥

11.__10__9 8 1 6 S 4 3 2 1 0
I i |

0 BUFFER ADDRESS| RT]

— |

l | |
[O TR T T O I O |
1] i i

foers o 2o

Read one byte data from the number 2 16 bytes buffer 1lo-

cation addressed by the four BUFFER ADDRESS bits and load the
|

data inio DB.

UPDATE_DA
‘ 150 ns
11 10 9 8 7 6 S5 4 3 2 1 0
| | | | i | l } l l 1
101 01O vV Y VL0 O DA-UP | RT|
S DEUNS N DEUEUEY DEVUSES NUUNEN WAV DU DAV NI

Update the contents of DA according to the three DA-UP

bits as shown in Table B6.

149

Table B6. UPDATE DA Mnemonics and Operations

DA-OUP Mnemonics Operations
000 DA (00) xxxxxx00
001 DA (01) Xxxxxxx01
010 DA(11) xxxxxx1i1l
011 DA (100) 100XXXXX
100 DA(010) 010xxxxx
101 DA (00 1) 001xxxxx
110 DA (SC) Replace the low order 4

bits of DA with the low
order 4 bits of DB.

111 DA (DT) Replace the high order 4
bits of DA with the low
order 4 bits of DB.

READ/WRITE
200 ns
11 10 39 8 7 6 S a 3 2__.1 0
{ | | { i | ! { H i i
| 01O 10O TV 1T 14 041 1 | BEAD/NRITE} RTY
| i i 1 1 1 1 1 1 1 i

WHEN THE READ/WRITE bits are 000, reading one byte data
from memory is performed as follows: Read one byte data from
the memory location addressed by RB and RA and load the data

into DA.

150

When the READ/WRITE bits are 001, writing one byte data
into memory is performed as follows: Write the contents of

DA into the memory location addressed by RB and RA.

UPDATE_STATUS_REGLSTER

200 ns
11 10 9 8 7 6 .5 4 3 2___1 0
i ! i | ! } | | { l |
t 0O 0y o0} 11 1T 1 1Y) 0 UPDATE | RT|
i 1 1 1 L L 1 i 1.1

Update the contents of STSR according to the three

UPDATE bits as shown in Table B7.

Table B7. UPDATE STATUS Mnemonics and Operations

UPDATE Mnemonics Operations

000 SO1 xxxxx1xx (NACK; 1)

001 SU2 Xxxx1xxxx (ACK; 1)

010 SU3 xxx1x1xx (NACK, ACK; 1)
011) SU4 xxx1x0xx (NACK; 0, ACK; 1)

100 SUS xx01xxxx (SPECIAL; 0, ACK; 1)

151

CHECK

300 as

1i__10__9 8 7 6 5 4 3 2 1

! | l | | |
1 01 010 T11 111111 CK I RT{
i i I

|
|
1 1 1 1 L 1 1 l

Do checking operations according to the three CK bits as
shown in Table B8. When the last bit (return bit) is set and
any required match has been found, then SUBROUTINE ROM is
disabled and the PROCEDURE RCM is activated.

Most of these checking instructions require two-way
branch-out depending upon the match and non-match of the
checking result. However, one instruction, CK2, requires
three-way branch-out depending upon the information checked.
For those two-way branch-out 1instructions, the next instruc-
tion to be executed is to be fetched from the memory address
obtained by incrementing the current address by one or two
depending upon the non-match or match of the checking respec-
tively. For the three-way branch-out instruction, the next
instruction to be executed is to be fetched from the memory
address obtained by incrementing the current address by one,
two or three depending apon the information checked;

For both cases, the memory address is automatically
incremented to get the proper memory address of the next in-
struction to be executed depending upon the type of checking

instruction and the result of checking.

152

Table B8. CHECK Mnemonics and Operations

CK Fnemonics Operations

0090 CK1 Check match between DA
and DB.

001 CK2 Check the low order two
bits of DA for 00, 01, 11.

010 CKAB Check the high order three bits of

' DA for 100, 010 and 001.

011 CKOP Check the low order three bits of
DA for 100.

100 CKXMITC Check XMITC (Transmission

counter) for 0100.

400ns x table size

8
{ |
1 01
) I

7 6 5 4 3 2 1 0
0

i |
0 | RT|
1 |

Activate the Table

operations according to

Matcher for automatic table checking

the three ETM bits as follows.

When ETM bits are 000 (ETM A), the following operations

are performed:
between DB and the data

RA.

Activate the Table Matcher to check the match

in RAM location addressed by RB and

The number of entries to be checked is stored in the low

order 5 bits of RC and an entry increment for calculating the

153

next memory address is in the high order three bits of RC.
In short, this instruction enables the Table Matcher to do

automatic checking following read-check-increment sequence of

operations until either a match is found or the total re-
guired number of checks are done.

When ET# bits are 001 (ETM B), following operations are
performed: Activate the Table Matcher to find the low order
two bits of DA for 01. The first data to be checked is
stored in the RAM location addressed by RB and RA. The num-
ber of entries in the table to be checked and the entry in-
crement are stored in RC in the same way as ETM A. In short,
this instruction cenables the Table Matcher to do automatic
checking tollowing read-check-increment sequence of

operations until either 01 in the low order two bits of DA is

tcund or the total required number of checks are done.

CLEAR_REGISTER/COUNTER

150 ns
11 10 9 8 7 6 5 4 3__.2__.1 _0_
{ |] l I | | | { { i
{01 0101010101} 11 01} CLR ! RT|
| 1 1 1___1 1 J 1 l 1 |

Replace the contents of registers or counters specified

by the three CLR bits with zero as shown in Table B9.

Table B9.

154

CLEAR Mnemonics and Operations
CLR Mnemonics Operations
000 CLR DA Replace the contents of DA with 0.
001 CLR DB Replace the contents of DB with 0.
010 CLR XMITC Replace the contents of XMITC with 0.
011 CLR SBP Replace the contents of SBP with O.
SHI DA
150 as
11__10__9 8 7__ 6 _ 5 _ 4 3 2 1 _0
{ { | | { | | |
1010} 01O} O} 1 1| SHF | RT|
1 i 1 i i 1 i___1
Shift the contents of DA according to the three SHF bits

as shown in Table B10.

155

Table B10. SHIFT DA Mnemonics and Operations

SHF Mnemonics Operations

000 SHIFT A Shift the contents of DA one bit
to the left (low order bit
to high order bit direction)
with incoming carry °'1°.

001 SHIFT B Shift the contents of DA one bit
to the left (low order bit
tc high order bit diraction)
with incoming carry '0°.

150 ns

11__10_ 9 8 i b 5 4 3 2 1 0

<
pus e
<

|
INC | RT
!

Increment the contents of the counter specified by the

three INC bits by one as shown in Table Bl11.

Table B11.

INCREMENT COUNTER Mnemonics and Operations

INC Knhemonics Operatioans
000 INC SBP Increment the contents of
SBP by one.
001 INC XMITC Increment the contents of
XMITC by one.
INTERROPT
150 ns
11__10__9 8 7___ 4 3 2 1 0
| | | |] | | ! | | |
f OO} 0O OO Q1T O VI INT | RT|
l d 1 1 | l 1 I 1
Interrupt the Micro-processor according to the three INC

hits as shoun

|-

n Table Ri12,

Table B1Z.

157

INTERRUPT Mnemonics and Operations

INT

Mnemonics

Operations

000

001

010

INT a

INT B

INT C

Interrupt the Micro-processor
for either shut-down procedure
or start-up procedure.

Interrupt the Micro-processor
for either source or destination
buffer or both.

Interrupt the Micro-processor

to inform the results of a table
checking when the Table Matcher
has been used on Micro-processor's
table checking operations.

HALT

HALT

50 ans

1

o
-t

10__9 8
1

0} 0

i i 1

|
|
1

0
0

W
pron conr

6 5
[{
0OjJ 010
1 i

TR,
o
oo,
foe com acme
(o7}
T

Stop the normal operations of the interface immediately

in the same way as the case in which the last bit (halt bit)

of CALL ins‘ruction is set when the accessed subroutine exe-

cution is done.
decoding this instruction, the Character Counter and
Counter 1in the associated repeater are to be checked

termine whether the Table Matcher can be used by the

When the intertface is in a hold state by

Bit

to de-

associ-

158

ated Micro-processor for a fast table checking operations.

The 'd's in bits 3, 2, 1 are don't care bits.

RETURN
RTN 50 ns
11 10 9 8 7 o) S 4 3 2 1 0_
| l l i]) l | i i l l l
1010101010000 daradar dinl
l i i 1 i 1 i)| 1 1 1 1 |

Activate the procedure ROM and disable the subroutine
ROM same as the case in which the last bit (return bit) is
set tor the instructions whose last bit is return bit when

the required instruction execution is done.

159
APPENDIX C. DESCRIPTIONS OF BASIC SUBROUTINES

Processing requirements of forty two basic subroutines
stored in the 256 bytes (12 bit per byte) are described
bherein. The notations used for these basic subroutines are
same as shown in the simplified flowcharts in Appendix E.
For explicit descriptions, special storage locations in the
reserved area are denoted as hexadecimal codes as specified
in Appendix D if necessary.

X1: Save TSAT updating information in TUT after a match is
tound.

a) Store time slot number updating information in 80,

81 and 82.

b) Store assigned buffer updating information imn 90, 31

and 92.

c) Store the source buffer number in 02.
X2: Save TSAT updating information in TUT after an empty lo-

cation in TSAT is found.

a) Store time slot number updating information in 80,

81 and 82.

b} Store the galected source bhuffer numhbher fcontents of

e e e e er VA e e s wmias

Source Buffer Pointer) updating information in 90, 91

and 92.

X3: Save SBST updating information in TZT after a ready

source buffer is found.

a) Store the source buffer status updating information

160

in AC, A1 and A2.
b) Store the scurce buffer number in 02.
X4: sSave DBST updating information in TUT after a regquired
destination buffer status is foungd.
a) Store the destination buffer status updating infor-
mation in BO, B1 and B2.
X5: Save the contents of registers temporarily.
a) Store the contents of RB, RA, DA and RC in FO, F1,
F2 and F3 respectively.
b) Store Allowed Destimation in 22.
X6: Save PNT updating information in TUT if the contents of
the allowed source byte is zero.

a) Store the allowed source updating information in CO,

C1 and C2.
Note: This routine is used only for a regular message
t0o a process name,
X7: sSave the destination buffer number assigned to the al-
lowad destination in 12.
X8: Store systenm destination buffer number in 12.

X9: Set up the beginning address of the selected source buf-

a) Load the source buffer number, in 02, into Da.
b) Load the beginning address of SBAT, in 50 and 51,

into RB and RA respectively.

c) Calculate the source buffer address properly.

1<

fed

e
"

tion

P4
b
o

tion

I»4

foit

Iw
™"

42

£i
rh
rh

X14:

——

X15:

161

Set up the beginning address of the selected destina-
buffer.
a) Load the destination buffer number, in 12, into DA.
b) Load the beginning address of DBAT, in 60 and 61,
into RB and RA respectively.
c) Calculate the destination buffer address properly.
Set up the SOURCE byte address of the selected destina-
buftfer. ‘
a) Load the destination buffer number, in 12, into DA.
b) Load the beginning address of DBAT, in 60 and 61,
into RB and RA respectively.
C) Calculate the destination buffer address.
d) Calculate the SOURCE byte address of the buffer
properly.

Set up the OP CODE byte address of the select2d source

-
A]

a) Load the source buffer number, in 02, into DA.

b) Load the beginning address of SBAT, in 50 and 51,

into RB and RA respectively.

c) Calculate the source buffer address.

djy Calculate the OP CODE byte address of the source

butfer properly.
Check the allowed source for zero.

Check the allowed source for SOURCE byta of the incom-

ing time slot.

162

X16: Check DBST.

a) Load the beginning address of DBST, in 40 and 41,
into RB and RA respectively.
b) Load the destination buffer number, in 12, into DA.
Cc) Calculate the address of the required destination
buffer status to be checked.
d) Check the destination buffer status.
X17: Load the contents of registers, which were saved tempo-
rarily, back into the associated registers.
a) Load the contents of FO, F1, F2 and F3 into RB, RA,
DA and RC respectively;
b) Prepare for continuing the table checking
operations.
X18a: Opdate tim= slot number of TSAT.
a) Load the contents of 80, 81 and 82 into RB, RA and
DA respectively. |
b) ®rite the contents of DA into the memory location
addressed by RB and RA.
X18b: Update the assigned buffer of TSAT.
a) Load the contents ot 90, 91 and 92 into RB, RA and
DA respectively.
b) Update the high order three bits of DA to 100.
c) Write the contents of DA into the memory location
addressed by RB and RA.

X18c: UOpdate an assigned buffer of TSAT.

163

a) Load the contents ¢of 90, 91 and 92 into RB, RA and
DA respectively.
b) Update the high order three bits of DA to 010.
c) Write the contents of DA into the memory location
addressed by RB and RA.

X18d: Update an assigned buffer in TSAT.
a) Load the contents of 90, 91 and 92 into RB, RA and
DA respectively.
b) Update the high order three bits of DA to 001.
C) Write the contents of DA into the memory location
addressed by RB and RA.

X18e: Update an assigned buffer in TSAT.
a) Load the contents of 90, 91 and 92 into RB, RA and
DA respectively.

b) Update the high order three bits of DA to 000.

.

.

—~
“J

rfite the comtents of DA into the memory iocation
addresséd by RB and RA.

X18f: Update SBST.
a) Load the contents of A0, A1 and A2 into RB, RA and
DA respectively.
b) Write the contents of DA into the memory location
addressed by RB and RA.

X18g: ©Update DBST.
a) Load the contents of BO, B1 and B2 into RB, RA and

DA respectively.

164

b) Write the contents of DA into the memory locatioﬂ
addressed by BB and RA.
X18h: Update the allowed source byte in PNT.
a) Load the contents of CO, C1 and C2 into RB, RA and
DA respectively.
b) VWrite the contents of DA into the memory location
addressed by RB and RA.
X19: Store an interrupt code for a source buffer.
a) Load the contents of 02 into DA.
b) Generate a proper interrupt code.
c) Store the interrupt code into 32.
X20: Store an interrupt code for a destination buffer.
a) Load the contents of 12 into DA.
b) Generate a proper interrupt code.
c) Store the interrupt code into 32.
X2ia: Store an interrupt code to inform that the Tabie
Matcher found a match for the Micro-processor's table
checking operations.
a) Generate a proper interrupt code.
b) Store the interrupt code into 52.
X21b: Store an interrupt code to inform that the Table
Matcher could not find a match for the Micro-processor’!s
table checking operations.

a) Generate a proper interrupt code.

b) Store the interrupt code into 52,

165

X21c: Store an interrupt code for activating the Micro-
proéessor to initiate the shut-down procedure after detecting
a power failure.

a) Generate a proper interrupt code.

b) Store the interrupt code into 52.
X21d: Store an iaterrupt code for activating the Micro-
processor to initiate the start-up procedure when power
becomes normal.

a) Generate a proper interrupt code.

b) Store the interrupt code into 52.

X23: Prepare for checking the acknowledged time slots in

a) Load the contents of 00 and 01 into RB and RA re-
spectively.

by Load the contents of 03 into RC.

¢) HReplace the contents of DB with the current time

slot number.

X24: DPrepare for checking an empty time slot location in

a) Load the contents of 00 and 01 into RB and RA re-
spectively.
b) Load the contents of 03 into RC.
c) Clear th2 contents of DB.
X25: Prepare for checking process names in PNT.

a) Load the contents of 10 and 11 into RB and RA re-

166

spectively.
b} Load the contents of 13 into RC.

c) Load the DESTINATION byte of the time slot into DB.

I><

,w
(o)}
(1]

Prepare for checking allowed destinations in ADT.
a) Load the contents of 20, 21 and 23 into RB, RA and
RC respectively.
b) Load the DESTINATION byte of the current time siot
into DB.
X27: Prepare for checking SBST to find a ready source buffer
to be transmitted.
a) toad the coatents of 30, 31 and 33 into RB, RA and
RC respectively.
X28: Access the argument list to obtain checking
informations when the Table Matcher is used for checking a
table on the Micro-processor®s request.

a) Load the contenis of FU, Fi, F2 and ¥3 into KB

=

? A,

DA and RC respectively.

b} Replace the contents of DB with the contents of DA,
X29: Load the updated STATUS byte and the following 5 bytes
of returning message into the original source buffer.
X30: Load the updated STATUS byte, the following 4 bytes of
returning message and the allowed destination into the origi-
nal source buffer.

a) Write the updated STATUS byte into the RAM location

addressed by RB and RA.

x31:

167

b) Receive 4 bytes of returning message (OP CODE, DES-
TINATION, SOURCE, SEQUENCE) into the consecutive 4 bytes
of memory locations.

C) Load the contents of 22 into DA.

d) Write the contents of DA into the 6th byte of the

original source buffer.

Return memory location where the Table Natcher found a

ratch for the Micro—processor's checking request.

x32:

a) Store the contents of RB and RA into the memory lo-
cation DO and D1 respectively.

Load allowed destination into DA and replace the

contents of DC with the contents of DA.

33:

a) Load the contents of 22 into DA.
b) Replace the contents of DC with the contents of DA.

Load the updated STATUS and the following 14 bytes in-

~ ~ L b & & - - £ £
cocming message into the salected destipation buffer.

168
APPENDIX D. SPECIAL STORAGE

The reserved locations in RAM described herein are those
which are being used as special storages. Each reserved lo-
cation is used for specific purpose, mostly for the temporary
data storage. Total 64 bytes out of 512 bytes RAM are re-
served for this purpose. In this way, significant amount of
hardware involved in designing the interface can be saved by
reducing the number of scratchpad registers inside the

interface.

Table

169

Dl1. Reserved locations for TAT, TUT and IIT

TYPE address SS register Usage

TAT 001000000 0 O B8B beginning address of TSAT

TAT 0010000017 O 1 RA

TOT 001000010 O 2 DA source buffer number

TAT 001000011 0 3 RC no. of entries and an entry
increment in TSAT

TAT 001000100 1 O 8B beginning address of PNT

TAT 001000107 1 1 RA

TUT 001000110 1 2 DA destination buffer number

TAT 001000111 1 3 RC no. of entries and an entry
increment in PNT

TAT 001001000 2 3 BB beginning address of ADT

TAT 0017001001 2 1 RA

TUT 001007010 2 2 DA allowed destinaticn

TAT 0010010117 2 3 RC number of entries and an entry
increment in ADT

TAT 001001100 3 O RB beginning address of SBST

TAT 001001101 3 1 RA

IIT 001001110 3 2 DA interrupt cede for
source/destination buffer

TAT

001001111 3 3 RC no. of entries and an entry
increment in SBST

170

Table D1. (continued)

TYPE address SS register Usage

TAT 001010000 4 O RB beginning address of DBST
TAT 001010001 4 1 RA .

001010010 4 2

001010011 4 3
TAT 001010100 5 O RB beginning address of SBAT

TAT 0010107101 5 1 RA

IIT 001010110 S5 2 DA interrupt code for start-up,
shut-down procedurss and allowing
Table Matcher to Micro-processor

001010111 S5 3

TAT 001011000 6 O RB beginning address of DBAT

TAT 001011001 6 1 RA

<G
ad
<o
ad
-
<
ad
(4]
[«))
\®]

Y
-
(=]
)
b
o
w

<
-
<

IIT 0010311100 7 O RB beginning address of a table

IIT 001011101 7 1 RA
IIT 001011110 7 2 DA data to be compared

IIT 001011111 7 3 RC no. of entries and an entry
increment

arqument list for Micro-processor

Table

D1. (continued)

171

time slot number updating

source buffer status updating

updating information for DBST

TYPE address SS register Usage
TUT 110100000 8 O RB
TUT 110100001 8 1 RA information for TSAT
TUT 11017100010 8 2 DA
110100011 8 3
TUT 110100100 9 O RB assigned buffer updating
TUT 110100101 9 1 RA information for TSAT
TUT 110100110 9 2 DA
110100111 ¢ 3
TUT 110107000 A O RB
TUT 110101001 A 1 RA information for SBST
TUT 11010710160 A 2 DA
33636307y A 3
TUT 1101011b0 B O RB destination buffer status
TUT 110101101 B 1 RA
TUT 110101110 B 2 DA
1101011117 B 3

Table

D1. {continued)

172

TYPE address SS register Usage
TOT 110110000 C O RB allowed source updating
TOT 110110001 C€ 1 RA information for PNT
TOT 110110010 C 2 DA
110110011 C 3
IIT 110110100 D O RB 4interrupt data return
" IIT 110110101 D 1 RA for Micro-processor's Jjob
110110110 D 2
110110717117 D 3
110111000 E O
1101110017 E 1
110111010 E 2
11011710717 E 32
TAT 110111100 F O RB temporary saving area
TaT 1101111017 F 1 RA for kB, kA, DA and RC
TAT 110111110 F 2 DA
TAT 1101111117 F 3 RC

173
APPENDIX E. SIMPLIFIED FLOWCHARTS

The flowcharts shown in Appendix A are simplified
applying the basic subroutines and the instructions shown as
mnemonics according to the STATUS and OP CODE byte described
in Appendix C and Appendix B respectively. The processing
requirements for different procedures are combinations in

Table 3 and scme other requirements.

i

174

failure
initiated D etectoad
@ l
X21
X21 c
d
'
INT A
INT A
23
*NQ- ETM A
Yes
X1
Figure E1.

Yes

X31

X21

Start-up, shut-dcwn and TMMC procedures.

175

—

Time Slot error and log
enpty bit set
X27 X23
E™ B No L EM™M A
Yes Yes
X3 X1
CIR DB CKAB —NQ;
Yes ,
DA (00) X13 No
— No $Yes
“n ' .
X24 X24
No No ¥ _
ETM A EM A = ED)
N—
Yes Yes

D [O

Fiqure E2. Data transmission and error procedures.

X23

EIMA

Yes

176

X23

X8

X16

Su3

—

CK XMITq

Yes

mnc

&

Fiqure E3.

00

Su2

DA(01)

X4

X1l

X33

H2

X23

Yes

X8

Broadcasting message.

177

11| x16 |

x12 S su2

Fiqure E3. (ccntinued)

B R——
00]No ‘
su2 3
!
DA(01)
X4
-

178

X23
EM A
Yes
X1
X25
oS O No
‘Yés Yos
x8 el
o1
e S SR
sg3 7] X6
~_—>¢ 50
A~ /o5 \
@m CK XMITC U2 H—y
i
Yes
e DA (01) X4 x11 X33

Figure E4. System message to a process.

179

X25

ETM A

?ks

X8

11

Figure

xi6 1L} xi2 55
o0 [
su2 sU3
DA(01) e
X4
X11
X33

E4.

(continued)

x8 ¥ g a

X23

] {Yés
11
X16 00 X1
[|
DA(11) X8
Xa
| X16 00
I I~y
{ UL
x12 O, | | DA (11)
l Yes
Y
X4
0s

180

Yes

Figure ES.

Special messages.

X23
X25 lq Mol oo
l &Ye;
N | gma 1
|Yes
X8 X25
00 No
11 X16 EM A -——-—-
Yes
% F A
DA (11) X8
I |
X4 X16 %%—-‘—I
Yol
0s
Mol x2 DA(11) @
Yes
Yes
X4 (—w] Xi2
| No

181

x23
EM A PO——] xg
 Yes 1
Y_ 00
X1 e | 1L
o1
X8 DA (00)
00
U1 e
x4
o1
DA (00)
xiz LYo
[Yes
X4 |
No
S ey |

® @

X12
Yes

Figure ES. (continued)

X26
EM A }E
Yes
X8
11

X4

X23

182

EM A

Yes

X1l

X33

Figure EE€.

DA(11)

X1

X33

System message tc a device address.

183

E5

X23

Yes

a

o B

X23
|
EM A =X °
yves
X1 %
su4
X25 |
- + DA(11)
rhb. EMM A I
17 | - X4
HOIE
X1l
<—1 SUL F‘I\P— X14
4Yés ’OO
X6 X7 s} X16
i 1

®

g

&8
~

Figure E7. Regular message to a process.

X25

184

11
0L

%oo

Su4

DA(11)

SUl

X16 }——-| SU3

X17

X4

Figure E7.

X11

X33

(continued)

185

X23
EM A No i X25
Y Yes
No
X1 EM A
Yes
X25 X5

l__—-— EIM A X15
» Yes

x5 L—wl x17 @
Yes
SUS ,,

oS
18

Figure E§. Retransaission of a reqular message to a process.

186

oS —
u S

X23 X23
ETM A N g oA
‘Yés Yes
X1 X1
No
EM A —j
Yes DA(11)
N
t——| X15
|Yes %
X7
11 X1l
01
+—| X16
*00 X33
su2

Figure E9. Reqular message to a device address.

187

X26
No
EMA
Yes
&, X15
y Yes
o .
11
01
la—— X16
‘ 00
Su2
DA(11)
X4
Tos
X1l (——] X33 15
Figqure E9. (continued)

X18

.

STZ
|
X9 T
X29
X19
INT B
xi8|_|x8 | o
a e /

Figure E10. Continuing procedures after no transmission
errors are detected.

STU

STF STU
83 X18
i .
X18
d

881

X1i8

X18

(s

STZ X18 STZ STZ
-y
X9 %20 X9 X18
a
X29 INT B X29 xiB
X19 X19
INT B
X18 l INT B Xé8 »
| q‘ I)
X18 Ll X18 |
a | e | X18 X18
X20 J } g a 6
Figure E10. (continued)

681

STZ

X9

X20

X29

X19

-

€

STU STz
X8 X32
g
){? 0 X9
INT B X30
X19

X20

X32

Figure E10.

(continued)

o6l

STZ

X32

X9

X30

X19

X9

STS

MOVE 46

X9

MOVE 35

MOVE 46

INT B

X18

ct

Figure E10.

MOVE 35

—

e

(continued)

Lot

ROST

X9

MOVE 46

MOVE 35

INC SBP

JUMP to LOOP

FOST
X18 X9 l
£ X18
£
a8 MOVE 46
a
X18
MOVE 35 a
X18
e
INC SBP X18
I e
NG
XMITC
\\
\

Figure E10. (ccntinued)

Z6l

193
APPENDIX F. CONTROL PROGRAMS

The control programs loaded into two separate program-
mable read only memories are obtained following the
simplified flowcharts in Appendix E and the instructions de-
scribed in Appendix B. These sequences of instructions
govern the Table Matcher operations as well as all the major
interface operations described earlier. Tvwo different parts,
one tor procedures and the other for basic subroutines, are

shouyn separately.

194

10

11

12

13

14

15

16

17

18

19

20

21

22

23

JMP

JMP

JMP

JMP

JMp

JHP

Jup

JHP

JMP

JHP

JmMp

JMP

JMP

JMP

JMP

Ca
-
[«

JMp

JUP

JMP

JMP

J¥P

195

START

™THHuC
H5A
H4a
H2A
F5Aa
F4 A
F2a
C2A
D2A
G2A
B54a
B32A
ESA

E23

4=
3

E6A

A22

A345A
XMIT

ERROR

100000011000
100000011011
100000100010
106000101100
100000111110
100001000011
100001011011
100001101100
100001110001
100001111101
100010610101
100010101010
100011000010
100011000111
100

o

111

o

100

-

-d
-d
-d
Y)

-h

-
]

(=]
(]

(]

G0
100100100000
100100110110
1001701100000
100101100101

100101110111

24
25
26
27
28
29
30
31
32
33
34
35
36

37

42
43
4G
45
46

47

START

SD

Loop

TMMC

A9

HS5A

196

CALL X21D
INT 2
HALT

CALL X21C
INT A
CALL X23
ETM A
WJMP 0S25
CALL X1
WJIMP 0512
CALL X 28
ETH A

JMP A9
CALL X31
CALL X21A
HALT

CALL X21B
INT C
HALT

CALL X23
ETHM A

JNP A1l

CALL X1

010101101000
000001010000
000000000000
010101010010
000001010000
010101110110
000000010000
110111111010
010000000000
110110101111
010110101010
000000010000
100000101001
010111001000

010101000100

ananAn 401
VVVVVY sV

<«

10¢
000000000000
010101001010
000001010100
000000000000
010101110110
0060006010000
100001001001

010000000000

48

49

50

51

52

53

54

55

56

57

58

59

60

61

bb

67

68

69

70

71

81

C1

H4A

H2A

CALL X8
CALL X16
JNP B1
Jip B1
Su2

DA (01)
CALL Xu
CALL X 11
CALL X33
WJINP 051
Su3

CK XMITC
WJIMP 0S3
WJMP OSt
CALL X23
ET™ A
JMP a1
CALL X1
JMP C1
CALL X 23
ETHM A
JNP A1
CALL X1

CALL X8

197

010001011100
010011001100
100000111010
100000111010
000111100010
000111000010
010000111100
010001111000
010111010010
110110000010
000111100100
000111111000
110110001100
110110001111

010101110110

[4=]

geeecogrc00e
100001001001
010000000000
100000111011
0101011106110
000000010000
100001001001
010000000000

010001011100

72
73
74
75
76
77
78
79
80

81

83
84
85
86
87
88
89
90
91
92
93
94

95

a1

D1

E1

F1

FSA

198

WJIMP 0S2
CALL X8
CALL X 16
JUP D1
JMP E1
Su2

DA (01)
CALL X4
CALL X 11
CALL X33
WJIMP 0S5
SU3

WJIMP 0S6
CALL X12
JMP F1
so2

WJIMP 0S6
Su3

WJNP 0S6
CalL X23
ETN A
JNP A2
CALL X1

CALL X25

110110000101
010001011100
010011001100
100001010011
100001010101
000111100010
000111000010
010000111100
010007111000
010111010010
110110010001
000111100100
110110010011
010010001100

100001011001

o
(o]
«

n 1
v .

-xd

100010
110110010011
000111100100
110110010011
010101110110
000000010000
100001111001
010000000000

0101100010170

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119

B2

F4A

F2A

199

ETM A
WJMP 0S8
CALL X8
CALL X 16
JNP B1
J4P B1
Su2

DA (01)
CALL X4
CALL X 11
CALL X33
WJMP 0S7
CALL X23

ETM A

CALL X23
ETH A
JNP A2
CALL X1
CALL X25
ETM A

®JMP OS2

000000010000
110110011000
0100017011100
010011001100
100000111010
100000111010
000111100010
000111000010
010000111100
010001111009
010111010010
110110010101
010101110110
000000010000
100001111001
100000111011
010101170110
000000010000
100001111001
010000000000
010110001010
000000010000

110110000101

120
121
122
123
124
125
126
127
128
129
130
131
132
133

134

136
137
138
139
140
141
142

143

A2

C2A

B3

A3

JMP B2
CALL X25
ETE A
HALT

JMP A1.
CALL X 23
ETHM A
JMP A3
CALL X1
CALL X8
CALL X16
HALT

JMP B3

WJ¥P 059
CALL X8
CALL X16
HALT

JHP C3

HALT

200

100001100010
010110001010
000000010000
000000000000
100001001001
010101110110
000000010000
100010001011
010000000000
010001011100
010011001100
000000000000
100010000110
000000000000
000111000100
G10060377100
010010001100
000000000900
110110011010
010001011100
010011001100
000000000000
10001C00C1117

000000000000

144
145
146
147
148
149
150
151
152
153
154
155
156

157

162
163
164
165
166

167

201

C3 DA (11)
CALL X4
CALL X 12
HALT
WJMP 0510

D22 CALL X23
ETH A
JMP S1
CALL X1
CALL X25
ETN A
WIMP 0S2
CALL X8
CALL X16
WIMP 0S2
iHP D3
WIMP 052

D3 DA (11)

CALL X4
CALL X 12
WIMP OS2

WJMP 0sS9

n
-
)
i
-
I

X25

000111000100
0100002111100
010010001100
000GCGCC0000
110110100011
010101110110
000000010000
100010100110
0%0000000000
010110001010
008332010000
110110000101
010001011100
010011001100
110110000101
1000707000607
110110000101
000111000100
010000111100
010010001100
110730000101
110110011010
010110001010

000000016000

168

169

170

171

172

173

174

175

176

177

178

179

180

181

184
185
186
187
188
189
190

191

G2A

HALT
JMP A3

CALL X23

~ ETM A

F3

trl
w

G3

JMP E3
CALL X1
CALL X8
CALL X16
WJIMP OS2
JHP F3
RJIJMP 0S2

DA (00)

202

CALL X4

CALL X12

WJMP OS2

wd
-3

(@]
wn

WOHE
CALL X8
CALL X16
HALT

JMP G3
HALT

DA (00)
CALL X4

CALL X112

000000000000
100010001011
010101110110

000000010000

100010111000

010000000000
010001011100
010011001100
110110000101
1000107110011
110110000101
060111000000
010000111100
010010001100
110110000101

aan
T IV

130700717
010001011100
010011001100
000000000000
100010111101
000000000000
000111000000
010000111100

010010001100

192
193
194
195
196
197
198
199
200
201
202
203

204

210
211
212
213
214

215

B54A

B2A

203

HALT
WJIMP 0S13
CALL X23
ETH A
HALT
CALL X1
WJmp 0S2
CALL X23
ETH A
JMP A4
CALL X1
CALL X26
ETM A
HALT
CALL X8
CALL X 1§
JMp B4
JMP B4
SU2

DA (11)
CALL %4
CALL X11
CALL %33

WJHP 0S4

000000000000
110110112011
010101110110
000000010000
000000000000
010000000000
110110000101
010101110110
000000010000
100011011010
010000000000
010110010010
000000010000
000000000000
010001011100
010011001100
100011011600
100011011000
000111100010
000111000100
010000111100
010001111000
010111010010

110110110100

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

237

232

233

235

230

237

238

239

td

204

B4 SU3
WIMP OS2

A4 CALL X26
ETM A
HALT
CALL X8
CALL X16
Jmp ct
JMP Ct
SU2
DA (11)
CALL X4
CALL X11
CALL X33

WJMP 0S15

(9]
4
w
(]
(%]

HIMP 056
SA CALL X23
ETH 2
HALT
CALL X1

WJINP 0S2

E234A CALL X23

ETN A

000111100100
110110000101
010110010010
000000010000
000000000000
010001011100
010011001100
100011100111
100011100111
000111100010
000111000100
010000111100
010001111000
010111010010
110110111101

449 «a 4NN AN
11 1TV 1V

[+]

GGO
110110010011
010101110110
000000010000
000000000000
010000000000
110110000101
010101110110

000000010000

240
241
242
243
244
245
246
247
248
243
250
251
252

253

257
258
259
260
261
262

263

DS

B5

205

JMP AS
CALL X1
CALL X25
ETH A
WJIMP OS2
CALL X5
CALL X114
JMP BS
CALL X6
CALL X7
CALL X16
JMP CS
JHMP C5

Su4

WJMP 0516
su1

CALL X717
JMP D5
SU3

CALL X17

100100001001
010000000000
010110001010
000000010000
110110000101
010001000010
010011000000
100100000011
016007001110
010001011000
010011001100
100100000110
100100000i10
000111100110

000111000100

nan
v

nnA19an
IVUUV It

160
010001111000
010111010010
110111000610
000111100000
010011010110
100011110011
000111100100

010011010110

2€4
265
266
267
268
269
270
271
272
273
274
275
276
277

278

280
281
282
283
284
285
286

287

A5

GS

ES

F5

JMP D5
CALL X25
ETM A
WJMP 056
CALL X5
CALL X14%
JHP ES
CALL X6
CALL X7
CALL X 16
JipP F5

JMP F5

SU1

CALL X17
JMP G5
S0U3

CALL X 17

JHP G5

206

100011110011
010110001010
000000010000
110110010011
010001000010
010011000000
100100011010
010001001110
010001011000
010011001100
100100011101
100100011101
000111100110
000111000100

010000111100

[+
s

080 111100¢C
010111010010
110111001101
000111100000
010011010110
100100001010
000111100100
010011010110

100100001010

288

289

290

291

292

293

294

295

296

297

298

299

300

301

305

306

307

308

309

310

311

207

E6A CALL X23
ETY A
JNMP HS
CALL X1
CALL X25
J5 ETHM A
WJINP 0S20
CALL X5
CALL X15
JMP I5
sus
4JMP 0518
IS CALL X717
JHP J5
HS CALL X25
ETY A
HALT
CALL X5
CALL X 15
HALT
SusS
wJHP 03519
A2R CALL X23

ETHM A

010101110110
000000010000
7100100101110
010000000000
010110001010
000000010000
110111011101
010001000010
0100110600110
100100101100
000111101000
110111010011
010011010110
100100100101

010110001010

<
<

annana1n
LVAPRV VAV RV

(4]

n
v

(9]

000000000000
010001000010
010011000110
000000000000
000117101000
110111011011
010101110110

000000010000

312
313
314
315
316
317
318
319
320
321
322
323
324

325

330
331
332
333
334

335

B7

c7

a7

208

JMP A7
CALL X1
CALL X26
ETM A
WIMP 052
CALL X15
JMP B7
CALL X7
CALL X16
JHP C7
JMP C7
Sg2

DA (11)
CALL X4
CALL X111
CALL X312
WJMP 0514
501

RJMP 0S2
SU3

WJMP OS2
CALL X26
ETH A

HALT

100101001101
010000000000
010110010010
000000070000
110110000101
010011000110
100101001001

010001011000

010011001100

100101001011
100101601011
000111100010
000111000100
010000111100
010001111000
010111010010
110110110100
000111100000
110&10000101
000111100100
110110000101
010110010010
000000010000

000000000000

336
337
338
339
340
341
342
343
344
345
346
3u47
348

349

353
354
355
356
357
358

359

D7

E7

A345A

IMIT

209

CALL X 15
JMP D7
CALL X7
CALL X1i6
JMP E7
Jup E7
s02

DA (11)
CALL X4
CALL X11
CALL X33
WJMP 0515
SU 1

WJMP 0S6

SU3

HALT
CALL X1
WJMP OS2
CALL X27
ETH B

HALT

010011000110
100103011100
010001011000
010011001100
100101011110
100101011110
000111100010
000111000100
010000111100
010001111000
010111010010
110110111101
000111100000
110110010011
000111100100
11071001001
010101110110
000000010000
000000000000
010000006000
110110000101
010110100100
000000010010

000000000000

360
361
362
363
364
365
366

367

370
31
372
373

374

378
379
380
381
382

383

L1

210

CALL X3

CLR DB

MOVE 80

CK1

JHP L1

CALL X24

ETM A

HALT

CALL X2

wImMp

(]
wn
o

4

CALL X24

ETM A

HALT

CALL X2

WJMP 0523

caLn

o
(o

Y
r

ETM &
HALT
CALL X1
CK AB
JMP A8
CALL X13
JMP A8

WIMP 0S22

010000100100
000000106010
001110000000
000111110000
100101110010
0107110000010
000000010000
000000000000
010000010010
710177710001
010110060010
000000010000
000000000000
010000010010
110111101001
010101110110
000000010000
000000000000
010000000000
000111110100
100110000000
010010100100
100110000000

110111100100

3gu
385
386
387
388
389
390
391
392
393
394
395
396

397

401
402
403
404
405
4006

407

A8

051

052

0S3

O
n
&

0S5

056

211

WJMP 0S21

0SC 82

CALL X 18g
CALL X18b HT
osc 7

CALL X9

CALL X29
CALL X719

INT B

CALL X18a
CALL X 18e HT
OsC 8

INC XMITC
HALT

0sC 80

CALL X184 HT
0OsSC 6

CALL X18g HT
0OsSC 6

HALT

0sC 81

CALL X 18g

CALL X18c HT

110111011111

011100000100
010700011110
0106711110001
011010000000
010001100000
010110110110
010100110100
000001010010
010011100010
010100001111
011100000000
000001000010
000000000000
011100000001
010100000101
011001000000
010100011111
011001000000
000000000000
011100000010
010100011110

030011111011

408
409
410
411
412
413
414
415
416
417
418
419
420
421

422

424
425
426
427
428
429
430

431

0510

Q

212

0S8 0SC 81

059

ad

CALL X18c HT

0osc 7

-CALL X9

CALL X29
CALL X19
CALL X 18g
CALL X20
INT B
CALL X18a
CALL X 18e HT
CALL X18g
CALL X20
INT B
HALT

gsc 7
CALL X9
CALL X29
CALL X19
INT B
CALL X 18g
CALL X18a

CALL X 18e HT

0512 Osc 7

011100000010
010011111011
011010000000
0100011006000
0101710110110
010100110100
010100011110
010100111100
000001010010
010011100010
010100001111
010100011110
010100111100
000001010010 -
000000000000
013010000000
010001106000
010110110110
010100110100
000001010010
0101700011110
010011100010
010100001111

011010000000

OLLLLOOGIORO
00LOLLOOLOLO
00LLLLOLLOLO
00000LLO0OO0LO
00LLOOLLLOLO
0000000LOLLO
000000000000
oLo0LOLO00OO
OOLiLiL0OLOLOD
otLiiLoooLcLo
000000L00LLO
LLLLOOOOLOLO
0L000LL1L00LO
0L00LOLOOO0O
00itii00OLoLo
oOLLLLOOOLOLO
00LOLLOOLOLO
OLLOLLOLLOLO
oooo0LLOOO0OLO
0000000L0OLLO
oOLLLLOOOLOLO
Lotiroocooolt
oLiLiLgo00LOLO

oLOoO0O0LLLOOLO

bgL X 1T1¥D
6LX TT¥D
0f X T1¥D
6X TIYD
ZEX TTYD
L 23S0

J1VH

- —a

bgL X TIVD
9 DSO

1H ®8LX TIVD
egLX TT¥D
g INI

0ZX 11V
bgLx 11v¥D
6L X TIYD
62X TI¥D
6X TID

L 2SO
bgL X TIY¥D
dooT1 dur
8gLX TI¥D

egL X T1IYO

1 3 ¥4

91S0

G1Ss0

tLso

£LSO

SSh
hGh
£Gh
ZGh
LGHh
0GH
6ht
ght
i
9ht
Ght
nht
Eht
Znh
Lht
ot
6€H
8€H
LE
9t
Seh
hEt
£€h

Zen

456

457

458

459

460

461

462

463

uo4

465

466

467

468

474

475

476

477

478

479

0s17

0518

0s19

0520

0s21

214

CALL X20

INT B

CALL X 18a
CALL X18e
CALL X 18h HT
0SC 64

CALL X 32
CALL X184
CALL X 20

INT B

CALL X 18h HT
osc 7

CALL X32

CALL X9

CALL X18a
CALL X 18e HT
0SC o4

CALL X32 HT
0SC 8

HALT

0sc 3

010100111100
000001010010
010011100010
010106001110
010100101101
011001010000
010111001100
010100011110
010100111100
000001610010
010100101101
011010000000
010111001100
010001100000

010110111100

n101
AV AR RV

[+]

nt{1T1n
vy

-sd

¢o
0000010106010
010011100010
010100001111
011001010000
010111001101
0?1100000000
000000000000

011000001000

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ugs

496

497

498

499

500

501

502

503

0522

0S23

0s24

215

CALL X9
MOVE 46
MOVE 35
HALT

0sSC 53
CALL X9
MOVE 46
MOVE 35
HALT

0sC 3
CALL X9
MOVE 46
MOVE 35
INC SBP
CALL X 18f
CRLL ¥18a
CALL X18e HT
osC 3
CALL X9
MOVE 46
MOVE 35
INC SBP
CLR XHMITC

CALL X18f

010001100000
001101000110
001100110101
0000000000C0
011000101000
212001100000
001101000110
001100110101
000000000000C
011000001600
010001100000
001101000110
001100110101
000001000000
010100010110
010011100010
010100001111
011000001000
010001100000
001101000110
001100110101
000001000000
000000100100

010100010110

504
505
506
507
508
509
510

511

216

CALL X18a
CALL X18e HT

0S25 Jup LOOP

010011100010
010100001111

100000011101

217

Subroutines

10

1

12

13

14

16

17

18

19

20

21

22

23

X1

X2

X3

218

STORE 80
STORE 81
CLR DA
STORE 82
ADR A1l
STORE 90
STORE 9N
STORE 92
STORE 02
STORE 80
STORE 81
MOVE 70
STORE 82
ADR a1l
STORE 90
STORE 91
MOVE 80
STORE 92
MOVE C1
MOVE 80
ADD A3
STORE A0
STORE A1l

MOVE 10

RTN

RTN

000101000000
000101000010
000000100000
000101000100
001010000010
000101001000
000101001010
000101001100
000100000101
000101000000
000101000010
001101110000
000101000100
001010000010
000101001000
000101001010
001110000000
000101001101
001100000001
001110000000
101050100000
0. 1910000
0001C1910010

001100010000

24

25

26

28

29

30

31

32

33

34

35

36

37

42

43

4y

us

46

47

X4

X5

o

X7

X8

219

DA (11)
STORE A2
MOVE 80

STORE 02

STORE BO
STORE B1
STORE B2
STORE FO

STORE F1

STORE F2

STORE F3

ADR A1

STORE 22

wn
+3
O
o
t
9]
<

STORE

Q
-

BDB 3

MOVE 10

STORE C2

ADBR A1

STORE 12

CLR DA

STORE 12

RTN

RTN

RTN

RTN

BTN

RTN

000111000100
00101010100
001110000000

000100000101

0001010117000
000101011010
000101011101
000101111000
000101111010
000101111100
000101111110
001010000010

000100010101

(]

n
v

[+

101700088
000101100010
000110100110
001100010000
000101100101
001010000010
006100001101
000000100000

000100001101

48

49

50

51

52

53

54

55

55

57

58

59

60

61

65

66

67

68

69

70

71

X9

X11

X12

220

LOAD 02
LOAD 50
LOAD 51
SHIFT B
ADR A3

MOVE 01
ADR A1

MOVE 14
MOVE 03

RT N

LOAD 12
LOAD 60
LCOAD 61
SHIFT B
ADR A3
MOVE 01
ADR A1
MOVE 14
MOVE 03
RTN
LOAD 12

LOAD 60

000010000100
000010101G00
000010101010
000000110010
001000100010
001100000001
001010000010
0011000101090
001100000011

000000000021

000010001100
000010110000
000010110010
000000110010
001000100010
001100000001
001010000010
001100010100
001100000011
000000000001
000010001100

000010110000

72

73

74

76

717

78

79

80

81

82

83

84

85

89

90

91

92

93

94

95

X13

221

LOAD 61
SHIFT B
ADR A3
HOVE 01
ADR A1
MOVE 14
MOVE 03
BDB 3
ADR A2
CK1 RTN
LOAD 02
LocAD 50
LOAD 51
SHIFT B
ADR A3
MOVE 01
ADR A1
MOVE 14
MOVE 03

ADR A1

CKOP RTN

000010110010
000000110010
001000100010
001100000001
001010000010
001100010100
001100000011
000110100110
001001000010
000111110001
000010000100
000010101000
000010101010
000000110010

001000100010
001100000001
001010600010
001100010100
001100000011
001010000010

GO0T11710111

96

97

98

99

100

101

102
103
104
105
106
107
108
109
110
111
112
113
114
115

116

117

118

119

X14

X15

X16

X17

X18a

CLR

ADR

CK1

BDB

ADR

CK1

LOAD

LOAD

LOAD

ADR

CK2

LOAD

LOAD

LOAD

LOAD

MOYVE

ADD A4 RTN

LOAD

LOAD

LOAD

¥RITE RTN

222

DB
a1
RTN
3
a1l
RTN
40
41
12
A3
RTN
FO
F1
F2

F3

01

-

80

81

82

000000100010
001010000010
000111110001
000110106110
00101€000010
000111110001
000010100000
000010100010
000010001100
001000100010
000111110077
000011111000
000011111010
000011111100
000011111110
001100000001
001000010001
000011000000
000011000010
000011000100

000117010011

120

121

122

123

124

125

1246

127

128

129

130

131

132

133

137

138

139

140

141

142

143

X18b

X18c

X184

2q
-d
co
(1}

X18f

X18g

223

LOAD 90
LOAD 91
LOAD 92
DA (100)
WRITE RTN
LOAD 90
LOAD 91
LOAD 92
DA (010)
WRITE RTN
LOAD 90
LOAD 91
LOAD 92
DA (001)

WRITE RTN

[$]

g
t2

an
”

[

t
o
o
o

91
LOAD 92
WRITE RTN
LOAD AO
LOAD A1
LOAD A2
HRITE RTN

LOAD BO

000011001000
000011001010
000011001100
0001117000116
000111010011
000011001000
000011001010
000011001100
000111001000
000111010011
000011001000
000011001010
000011001100
000111001010

000111010011

00001100100

(=]

000011007010
000011001100
000311010011
000011010000
000011010010
000011010100
000111010011

000011011000

4y

145

146

147

148

149

150

151

152

153

154

155

156

157

162

163

164

165

166

167

X18h

X119

X20

X21a

X21b

224

LOAD B1
LOAD B2

¥RITE RTN

LOAD CO
Loap C1
LOAD C2
WRITE RTN
LOAD 02

MOVE 01

DA (SC)

STORE 32 RTN
LOAD 12
MOVE 01
DA (DT)
STORE 32 RTN

CLR DA

P S Py

SHIFT A

SHIFT A

000011011010
000011011100

000111010011

000011100000
000011100010
0000117100100
000111010011
000010000100
001100000001
000111001100
000100011101
000010001100
GC1308308C6380q
000111001110
000100011101
000000100000
000000110000
000100101101
000000100000
0000001170000

000000110000

L0000000LLOO
ooooLLLOLLOO
oLLOC0OLO0OO0O
0L00000L0000
0000000L0000
LOLLOLOOLOOO

011000000
0000LL000000

-~

0000it0000

[as)
<)

00000L000000
0LLOOLOO0000O

60L00L000000

LoLL0L00L00CO
0L00LL000000
000011000000
0000LL000000
00000L000000

LOLLOLOOLOOO

L0 FTAOW
0L JTAOH
€0 QVOT
L0 Q¥ O1
00 Qvo1

NI¥8 ¢G J3¥01S
¥ IJIHS
¥ LJAIHS

¥ 4d1HS

¥a 3710
dgSs 8710

JLIRX 8713

RI8 7S d¥0IS
g4 &JIABS

Y IJTHS

¥ LJIHS

Ya 9710

NL¥ Z¢5 d80UIS

YA

£CX

PLZX

OLZX

L6t
061
681
881
L8l
981
S8l
hel
£81L
Z81L
L8L
o8l
6LL
8Ll
LLt
9Ll
SLL
het
eELL
2Ly
L2t
oLL
691

891

192
193
194
195
196
197
198
199
200
201
202
203
204

205

209
210
211
212
213
274

215

Xa4

X25

X26

X27

X28

226

RTN

LOAD 00
LOAD 01
LoAD 03
CLR DB RTN
LOoAD 10
LoaD 11
Loap 13
BDB 2 BTN
LoAD 20
LOAD 21
LOoAaD 23

BDB 2 RTN

LOAD 30
LOAD 31
LOAD 33 RTN
LOAD FO
LOAD F1

LOAD F2

000000000001
000010000000
000010000010
000010000110
000000100011
000010001000
000010001010
000010001110
000110100101
000010010000
0006010010010
00001G010110

000110100101

000010011000
000010011010
000010011111
000011111000
000011111010

000011111100

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

239

X29

X30

X31

X32

X33

227

LOAD F3
¥OVE 01
8T N

MOVE 90
WRITE

RCV 5 RTN
MOVE 90
WRITE

RCV 4

ADD A1
LOAD 22
WRITE RTN
STORE DO
STORE D1 RTN
LOAD 22
MOVE 02
RTN

MOVE 90
WRITE

RCV 14 RTN

000011111110
001100002001
000000000001
0011100170000
000111010010
000110001011
001110010000
000111010010
000110001000
001010000000
000010010100
000111010011
000101101000
000101101011
000010010100
001100000010
000000000001
001110010000
000111010010

000110011101

240
241
242
243
244
245
2406
247
248
249
250
251
252

253

228

	1975
	An interface processor for a high speed recirculating data network
	Chong Chun Lee
	Recommended Citation

	tmp.1412797745.pdf.JabdQ

